ON THE REGULARIZED INVERSION OF THE LAPLACE TRANSFORM

被引:34
作者
BRIANZI, P [1 ]
FRONTINI, M [1 ]
机构
[1] POLITECN MILAN,DIPARTMENTO MATEMAT,I-20133 MILAN,ITALY
关键词
D O I
10.1088/0266-5611/7/3/004
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we present an algorithm for the regularized inversion of the Laplace transform. We assume that the values of the Laplace transform are given in a finite number of equidistant points rho-i and that these values are affected by a Gaussian random noise with zero expectation and standard deviation sigma. The algorithm is applied to several examples and, in general, it gives a good approximation of the normal solution; numerical results are presented for values of sigma in the range [10-(6), 10(-2)] and for sigma = 0 (no noise).
引用
收藏
页码:355 / 368
页数:14
相关论文
共 19 条
[1]  
BELLMANN R, 1966, NUMERICAL INVERSION
[2]   LINEAR INVERSE PROBLEMS WITH DISCRETE-DATA .1. GENERAL FORMULATION AND SINGULAR SYSTEM-ANALYSIS [J].
BERTERO, M ;
DEMOL, C ;
PIKE, ER .
INVERSE PROBLEMS, 1985, 1 (04) :301-330
[3]  
BERTERO M, 1983, PUBBLICAZIONI I ANAL, V11
[4]   IMPROVED ESTIMATES OF STATISTICAL REGULARIZATION PARAMETERS IN FOURIER DIFFERENTIATION AND SMOOTHING [J].
DAVIES, AR ;
ANDERSSEN, RS .
NUMERISCHE MATHEMATIK, 1986, 48 (06) :671-697
[5]   NUMERICAL INVERSION OF THE LAPLACE TRANSFORM - SURVEY AND COMPARISON OF METHODS [J].
DAVIES, B ;
MARTIN, B .
JOURNAL OF COMPUTATIONAL PHYSICS, 1979, 33 (01) :1-32
[6]   ON THE NUMERICAL INVERSION OF THE LAPLACE TRANSFORM [J].
ESSAH, WA ;
DELVES, LM .
INVERSE PROBLEMS, 1988, 4 (03) :705-724
[7]  
FRONTINI M, 1988, ALGORITHM APPROXIMAT
[8]   GENERALIZED CROSS-VALIDATION AS A METHOD FOR CHOOSING A GOOD RIDGE PARAMETER [J].
GOLUB, GH ;
HEATH, M ;
WAHBA, G .
TECHNOMETRICS, 1979, 21 (02) :215-223
[9]  
HANSEN C, 1988, INT SERIES NUMER MAT, V86, P179
[10]  
Laurent P.-J., 1972, APPROXIMATION OPTIMI