The possibility that endogenous histamine plays an important role in modulating the pathophysiology of heat stress was examined in young rats using a pharmacological approach. Subjection of young animals (six to seven weeks old) to heat stress at 38-degrees-C for 4 h in a biological oxygen demand incubator (relative humidity 47-50%, wind velocity 20-25 cm/s) resulted in a profound increase in blood-brain barrier permeability to Evans Blue albumin (whole brain 375%) and [I-131]sodium (whole brain 478%) along with a significant reduction in the cerebral blood flow (mean 34%). The water content of the whole brain was elevated by 4.5% (about 19% volume swelling) from the control. At this time-period, the plasma and whole brain 5-hydroxytryptamine levels were elevated by 656% and 328%, respectively, from the control group. Pretreatment with cimetidine (a histamine H-2 receptor antagonist) significantly thwarted the increases in the brain water content and the blood brain barrier permeability. In cimetidine-pretreated animals, the cerebral blood flow was significantly elevated and the plasma and brain 5-hydroxytryptamine (serotonin) levels were slightly but significantly reduced as compared with the untreated stressed group. However, prior treatment with mepyramine (a histamine H-1 receptor antagonist) neither attenuated the changes in water content and the blood-brain barrier permeability nor altered the cerebral blood flow and 5-hydroxytryptamine levels. In fact, there was a significantly higher permeation of the tracers across the cerebral vessels in these drug-treated animals along with a greater accumulation of the brain water content as compared with the untreated stressed group. The cerebral blood flow and 5-hydroxytryptamine levels showed only minor changes from the untreated stressed group. These results show, probably for the first time, that (i) the endogenous histamine plays an important role in the pathophysiology of heat stress, and (ii) this effect appears to be mediated via specific histamine H-2 receptors.