KOLMOGOROV TURBULENCE IN A RANDOM-FORCE-DRIVEN BURGERS-EQUATION - ANOMALOUS SCALING AND PROBABILITY DENSITY-FUNCTIONS

被引:83
作者
CHEKHLOV, A
YAKHOT, V
机构
[1] Program in Applied and Computational Mathematics, Princeton University, Princeton
来源
PHYSICAL REVIEW E | 1995年 / 52卷 / 05期
关键词
D O I
10.1103/PhysRevE.52.5681
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
High-resolution numerical experiments, described in this work, show that velocity fluctuations governed by the one-dimensional Burgers equation driven by a white-in-time random noise with the spectrum \f(k)\(2) proportional to k(-1) exhibit a biscaling behavior: All moments of velocity differences S-n less than or equal to 3(r)=\u(x+r)-u(x)\(n)=\Delta u\(n) proportional to r(n/3), while S-n>3(r)proportional to r(xi n) with xi(n) approximate to 1 for real n>0 [Chekhlov and Yakhot, Phys. Rev. E 51, R2739 (1995)]. The probability density function, which is dominated by coherent shocks in the interval Delta u<0, is P(Delta u,r)proportional to(Delta u,r)(-q) with q approximate to 4. A phenomenological theory describing the experimental findings is presented.
引用
收藏
页码:5681 / 5684
页数:4
相关论文
共 8 条
[1]   SCALING AND INTERMITTENCY IN BURGERS TURBULENCE [J].
BOUCHAUD, JP ;
MEZARD, M ;
PARISI, G .
PHYSICAL REVIEW E, 1995, 52 (04) :3656-3674
[2]  
Burgers JM., 1974, NONLINEAR DIFFUSION, DOI DOI 10.1007/978-94-010-1745-9
[3]   KOLMOGOROV TURBULENCE IN A RANDOM-FORCE-DRIVEN BURGERS-EQUATION [J].
CHEKHLOV, A ;
YAKHOT, V .
PHYSICAL REVIEW E, 1995, 51 (04) :R2739-R2742
[4]   THE LOCAL-STRUCTURE OF TURBULENCE IN INCOMPRESSIBLE VISCOUS-FLUID FOR VERY LARGE REYNOLDS-NUMBERS [J].
KOLMOGOROV, AN .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1991, 434 (1890) :9-13
[5]  
Kolmogoroff AN, 1941, CR ACAD SCI URSS, V32, P16
[6]  
KRUG J, 1992, SOLIDS FAR EQUILIBRI
[7]  
Polyakov A.M., UNPUB
[8]  
YAKHOT V, UNPUB