TENSOR-PRODUCTS OF QUANTIZED TILTING MODULES

被引:103
作者
ANDERSEN, HH
机构
[1] Matematisk Institut, Aarhus Universitet, Aarhus C
关键词
D O I
10.1007/BF02096627
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Let U(k) denote the quantized enveloping algebra corresponding to a finite dimensional simple complex Lie algebra L. Assume that the quantum parameter is a root of unity in k of order at least the Coxeter number for L. Also assume that this order is odd and not divisible by 3 if type G2 occurs. We demonstrate how one can define a reduced tensor product on the family F consisting of those finite dimensional simple U(k)-modules which are deformations of simple L-modules and which have non-zero quantum dimension. This together with the work of Reshetikhin-Turaev and Turaev-Wenzl prove that (U(k),F) is a modular Hopf algebra and hence produces invariants of 3-manifolds. Also by recent work of Duurhus, Jakobsen and Nest it leads to a general topological quantum field theory. The method of proof explores quantized analogues of tilting modules for algebraic groups.
引用
收藏
页码:149 / 159
页数:11
相关论文
共 20 条
[1]   REPRESENTATIONS OF QUANTUM ALGEBRAS [J].
ANDERSEN, HH ;
POLO, P ;
KEXIN, W .
INVENTIONES MATHEMATICAE, 1991, 104 (01) :1-59
[2]   INJECTIVE-MODULES FOR QUANTUM ALGEBRAS [J].
ANDERSEN, HH ;
POLO, P ;
WEN, KX .
AMERICAN JOURNAL OF MATHEMATICS, 1992, 114 (03) :571-604
[3]  
ANDERSEN HH, 1992, J REINE ANGEW MATH, V427, P35
[4]  
CLINE E, 1980, INVENT MATH, V39, P129
[5]  
DONKIN S, 1991, TILTING MODULES ALGE
[6]  
DURHUUS B, 1991, TOPOLOGICAL QUANTUM
[7]  
Jantzen J.C., 1987, PURE APPL MATH, V131
[8]  
KAZHDAN D, 1991, INT MATH RES NOTICES, V2, P21
[9]   THE 3-MANIFOLD INVARIANTS OF WITTEN AND RESHETIKHIN-TURAEV FOR SL(2, C) [J].
KIRBY, R ;
MELVIN, P .
INVENTIONES MATHEMATICAE, 1991, 105 (03) :473-545
[10]  
LUSZTIG G, 1990, GEOMETRIAE DEDICATA, V35, P89