A SIMPLE EXPERIMENT FOR STUDYING THE TRANSITION FROM ORDER TO CHAOS

被引:28
作者
MEISSNER, H
SCHMIDT, G
机构
关键词
D O I
10.1119/1.14449
中图分类号
G40 [教育学];
学科分类号
040101 ; 120403 ;
摘要
引用
收藏
页码:800 / 804
页数:5
相关论文
共 14 条
[1]   BIFURCATION SEQUENCES AND TREE INTERACTIONS IN SOME HAMILTONIAN-SYSTEMS [J].
BIALEK, J ;
SCHMIDT, G ;
WANG, BH .
PHYSICA D-NONLINEAR PHENOMENA, 1985, 14 (02) :265-272
[2]   UNIVERSAL INSTABILITY OF MANY-DIMENSIONAL OSCILLATOR SYSTEMS [J].
CHIRIKOV, BV .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1979, 52 (05) :263-379
[3]   CASCADE OF PERIOD DOUBLING BIFURCATIONS AND LARGE STOCHASTICITY IN THE MOTIONS OF A COMPASS [J].
CROQUETTE, V ;
POITOU, C .
JOURNAL DE PHYSIQUE LETTRES, 1981, 42 (24) :L537-L539
[4]   RENORMALIZATION METHOD FOR COMPUTING THE THRESHOLD OF THE LARGE-SCALE STOCHASTIC-INSTABILITY IN 2-DEGREES OF FREEDOM HAMILTONIAN-SYSTEMS [J].
ESCANDE, DF ;
DOVEIL, F .
JOURNAL OF STATISTICAL PHYSICS, 1981, 26 (02) :257-284
[5]   RENORMALIZATION METHOD FOR THE ONSET OF STOCHASTICITY IN A HAMILTONIAN SYSTEM [J].
ESCANDE, DF ;
DOVEIL, F .
PHYSICS LETTERS A, 1981, 83 (07) :307-310
[6]  
Feigenbaum M., 1980, LOS ALAMOS SCI, V1, P4
[7]   UNIVERSAL BEHAVIOR IN FAMILIES OF AREA-PRESERVING MAPS [J].
GREENE, JM ;
MACKAY, RS ;
VIVALDI, F ;
FEIGENBAUM, MJ .
PHYSICA D-NONLINEAR PHENOMENA, 1981, 3 (03) :468-486
[8]   PERIOD 3 IMPLIES CHAOS [J].
LI, TY ;
YORKE, JA .
AMERICAN MATHEMATICAL MONTHLY, 1975, 82 (10) :985-992
[9]  
MATHEWS J, 1965, MATH METHODS PHYSICS
[10]   STRANGE ATTRACTORS AND CHAOTIC MOTIONS OF DYNAMICAL-SYSTEMS [J].
OTT, E .
REVIEWS OF MODERN PHYSICS, 1981, 53 (04) :655-671