THE ANALYTIC STRUCTURE OF QUARK PROPAGATORS

被引:35
作者
STAINSBY, SJ
CAHILL, RT
机构
来源
INTERNATIONAL JOURNAL OF MODERN PHYSICS A | 1992年 / 7卷 / 30期
关键词
D O I
10.1142/S0217751X92003410
中图分类号
O57 [原子核物理学、高能物理学];
学科分类号
070202 ;
摘要
An approximate Schwinger-Dyson equation for the quark propagator in Euclidean QCD is solved numerically in the complex s = p2 plane, where p(mu) is the quark Euclidean four-momentum. Complex conjugate pairs of singularities are discovered and an analytic contour pinch analysis shows that any such singularities must be logarithmic branch points. Appropriate logarithmic functions are fitted near the branch points to accurately determine their position. The physical significance of these singularities is as yet unclear.
引用
收藏
页码:7541 / 7559
页数:19
相关论文
empty
未找到相关数据