The function of the Mediator complex in plant immunity

被引:37
作者
An, Chuanfu [1 ]
Mou, Zhonglin [1 ]
机构
[1] Univ Florida, Dept Microbiol & Cell Sci, Gainesville, FL 32611 USA
基金
美国农业部; 美国国家科学基金会;
关键词
Mediator; plant defense; transcription regulation; salicylate; jasmonate/ethylene;
D O I
10.4161/psb.23182
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Upon pathogen infection, plants undergo dramatic transcriptome reprogramming to shift from normal growth and development to immune response. During this rapid process, the multiprotein Mediator complex has been recognized as an important player to fine-tune gene-specific and pathwayspecific transcriptional reprogramming by acting as an adaptor/ coregulator between sequence-specific transcription factor and RNA polymerase II (RNAPII). Here, we review current understanding of the role of five functionally characterized Mediator subunits (MED8, MED15, MED16, MED21 and MED25) in plant immunity. All these Mediator subunits positively regulate resistance against leaf-infecting biotrophic bacteria or necrotrophic fungi. While MED21 appears to regulate defense against fungal pathogens via relaying signals from upstream regulators and chromatin modification to RNAPII, the other four Mediator subunits locate at different positions of the defense network to convey phytohormone signal(s). Fully understanding the role of Mediator in plant immunity needs to characterize more Mediator subunits in both Arabidopsis and other plant species. Identification of interacting proteins of Mediator subunits will further help to reveal their specific regulatory mechanisms in plant immunity.
引用
收藏
页码:e23182.1 / e23182.5
页数:5
相关论文
共 49 条
[1]   Salicylic Acid and its Function in Plant Immunity [J].
An, Chuanfu ;
Mou, Zhonglin .
JOURNAL OF INTEGRATIVE PLANT BIOLOGY, 2011, 53 (06) :412-428
[2]   Conserved structures of mediator and RNA polymerase II holoenzyme [J].
Asturias, FJ ;
Jiang, YW ;
Myers, LC ;
Gustafsson, CM ;
Kornberg, RD .
SCIENCE, 1999, 283 (5404) :985-987
[3]   Cell numbers and leaf development in Arabidopsis:: a functional analysis of the STRUWWELPETER gene [J].
Autran, D ;
Jonak, C ;
Belcram, K ;
Beemster, GTS ;
Kronenberger, J ;
Grandjean, O ;
Inzé, D ;
Traas, J .
EMBO JOURNAL, 2002, 21 (22) :6036-6049
[4]   Purification of a plant mediator from Arabidopsis thaliana identifies PFT1 as the Med25 subunit [J].
Backstrom, Stefan ;
Elfving, Nils ;
Nilsson, Robert ;
Wingsle, Gunnar ;
Bjorklund, Stefan .
MOLECULAR CELL, 2007, 26 (05) :717-729
[5]  
Barneche F, 2000, J BIOL CHEM, V275, P27212
[6]   A mechanism for coordinating chromatin modification and preinitiation complex assembly [J].
Black, Joshua C. ;
Choi, Janet E. ;
Lombardo, Sarah R. ;
Carey, Michael .
MOLECULAR CELL, 2006, 23 (06) :809-818
[7]   REF4 and RFR1, Subunits of the Transcriptional Coregulatory Complex Mediator, Are Required for Phenylpropanoid Homeostasis in Arabidopsis [J].
Bonawitz, Nicholas D. ;
Soltau, Whitney L. ;
Blatchley, Michael R. ;
Powers, Brendan L. ;
Hurlock, Anna K. ;
Seals, Leslie A. ;
Weng, Jing-Ke ;
Stout, Jake ;
Chapple, Clint .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2012, 287 (08) :5434-5445
[8]   Comparative genomics supports a deep evolutionary origin for the large, four-module transcriptional mediator complex [J].
Bourbon, Henri-Marc .
NUCLEIC ACIDS RESEARCH, 2008, 36 (12) :3993-4008
[9]   The sfr6 mutant of Arabidopsis is defective in transcriptional activation via CBF/DREB1 and DREB2 and shows sensitivity to osmotic stress [J].
Boyce, JM ;
Knight, H ;
Deyholos, M ;
Openshaw, MR ;
Galbraith, DW ;
Warren, G ;
Knight, MR .
PLANT JOURNAL, 2003, 34 (04) :395-406
[10]   Mediator complexes and eukaryotic transcription regulation: An overview [J].
Casamassimi, Amelia ;
Napoli, Claudio .
BIOCHIMIE, 2007, 89 (12) :1439-1446