REAL INTERPOLATION AND COMPACT LINEAR-OPERATORS

被引:24
作者
COBOS, F
EDMUNDS, DE
POTTER, AJB
机构
[1] UNIV SUSSEX,DIV MATH,BRIGHTON BN1 9QH,E SUSSEX,ENGLAND
[2] UNIV ABERDEEN,DEPT MATH,ABERDEEN AB9 2TY,SCOTLAND
关键词
D O I
10.1016/0022-1236(90)90110-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that if T: A0 → B0 is compact and T: A1 → B1 is compact (or T: A1 → B1 is bounded and {A figure is presented}, then given any θ and q with 0 < θ < 1 and 0 < q≤ ∞, it follows that T: (A0, A1)0,q → (B0, B1)0,q, is also compact. Here (A0, A1)0,q and (B0, B1)0,q are the usual real interpolation spaces. © 1990.
引用
收藏
页码:351 / 365
页数:15
相关论文
共 12 条
[1]  
BEAUZAMY B, 1978, SPRINGER LECT NOTES, V666
[2]  
Bergh J., 1976, INTERPOLATION SPACES, V223
[3]  
Davis W. J., 1974, Journal of Functional Analysis, V17, P311, DOI 10.1016/0022-1236(74)90044-5
[4]   FUNCTION PARAMETER IN CONNECTION WITH INTERPOLATION OF BANACH-SPACES [J].
GUSTAVSSON, J .
MATHEMATICA SCANDINAVICA, 1978, 42 (02) :289-305
[6]  
Kantorovich LV, 1982, FUNCTIONAL ANAL
[7]  
KRASNOSELSKII MA, 1960, SOV MATH DOKL, V1, P229
[8]  
Lions J.-L., 1964, I HAUTES ETUDES SCI, P5, DOI 10.1007/BF02684796
[9]  
MERUCCI C, 1984, SPRINGER LECT NOTES, V1070, P183
[10]  
Peetre J., 1968, NOTAS MAT, V39, P1