A GEOMETRICAL DERIVATION OF THE SHAPE DENSITY

被引:18
作者
GOODALL, CR [1 ]
MARDIA, KV [1 ]
机构
[1] UNIV LEEDS,SCH MATH,DEPT STAT,LEEDS LS2 9JT,W YORKSHIRE,ENGLAND
关键词
SIZE-AND-SHAPE; PRESHAPE; LANDMARKS; OFFSET NORMAL; REPEATED NORMAL INTEGRAL; RIEMANNIAN SUBMERSION;
D O I
10.2307/1427619
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The density for the shapes of random configurations of N independent Gaussian-distributed landmarks in the plane with unequal means was first derived by Mardia and Dryden (1989a). Kendall (1984), (1989) describes a hierarchy of spaces for landmarks, including Euclidean figure space containing the original configuration, preform space (with location removed), preshape space (with location and scale removed), and shape space. We derive the joint density of the landmark points in each of these intermediate spaces, culminating in confirmation of the Mardia-Dryden result in shape space. This three-step derivation is an appealing alternative to the single-step original derivation, and also provides strong geometrical motivation and insight into Kendall's hierarchy. Preform space and preshape space are respectively Euclidean space with dimension 2(N - 1) and the sphere in that space, and thus the first two steps are reasonably familiar. The third step, from preshape space to shape space, is more interesting. The quotient by the rotation group partitions the preshape sphere into equivalence classes of preshapes with the same shape. We introduce a canonical system of preshape coordinates that include 2(N - 2) polar coordinates for shape and one coordinate for rotation. Integration over the rotation coordinate gives the Mardia-Dryden result. However, the usual geometrical intuition fails because the set of preshapes keeping the rotation coordinate (however chosen) fixed is not an integrable manifold. We characterize the geometry of the quotient operation through the relationships between distances in preshape space and distances among the corresponding shapes.
引用
收藏
页码:496 / 514
页数:19
相关论文
共 23 条
  • [1] ABRAMOWITZ M, 1972, NBS APPLIED MATH SER, V55
  • [2] A STATISTICAL-METHOD FOR BIOLOGICAL SHAPE COMPARISONS
    BOOKSTEIN, FL
    [J]. JOURNAL OF THEORETICAL BIOLOGY, 1984, 107 (03) : 475 - 520
  • [3] Bookstein FL, 1986, STAT SCI, V1, P181, DOI [DOI 10.1214/SS/1177013696, 10.1214/ss/1177013696]
  • [4] Crampin M., 1986, LONDON MATH SOC LECT, V59
  • [5] GENERAL SHAPE DISTRIBUTIONS IN A PLANE
    DRYDEN, IL
    MARDIA, KV
    [J]. ADVANCES IN APPLIED PROBABILITY, 1991, 23 (02) : 259 - 276
  • [6] PROCRUSTES METHODS IN THE STATISTICAL-ANALYSIS OF SHAPE
    GOODALL, C
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-METHODOLOGICAL, 1991, 53 (02): : 285 - 339
  • [7] QUANTITATIVE-ANALYSIS OF SURFACE GROWTH
    GOODALL, CR
    GREEN, PB
    [J]. BOTANICAL GAZETTE, 1986, 147 (01): : 1 - 15
  • [8] GOODALL CR, 1983, THESIS HARVARD U
  • [9] GOODALL CR, 1990, UNPUB MULTIVARIATE A
  • [10] GOODALL CR, 1990, IN PRESS J MULTIVARI