ON THE NUMBER OF HALVING PLANES

被引:62
作者
BARANY, I
FUREDI, Z
LOVASZ, L
机构
[1] HUNGARIAN ACAD SCI, H-1364 BUDAPEST, HUNGARY
[2] EOTVOS LORAND UNIV, DEPT COMP SCI, H-1088 BUDAPEST, HUNGARY
[3] PRINCETON UNIV, PRINCETON, NJ 08544 USA
关键词
D O I
10.1007/BF02123008
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let S subset-of R3 be an n-set in general position. A plane containing three of the points is called a halving plane if it dissects S into two parts of equal cardinality. It is proved that the number of halving planes is at most O(n2.998). As a main tool, for every set Y of n points in the plane a set N of size O(n4) is constructed such that the points of N are distributed almost evenly in the triangles determined by Y.
引用
收藏
页码:175 / 183
页数:9
相关论文
共 12 条
[1]  
[Anonymous], 1987, EATCS MONOGRAPHS THE
[2]   A GENERALIZATION OF CARATHEODORYS THEOREM [J].
BARANY, I .
DISCRETE MATHEMATICS, 1982, 40 (2-3) :141-152
[3]   EMPTY SIMPLICES IN EUCLIDEAN-SPACE [J].
BARANY, I ;
FUREDI, Z .
CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 1987, 30 (04) :436-445
[4]  
Boros E., 1984, GEOM DEDICATA, V17, P69, DOI DOI 10.1007/BF00181519
[5]   SUPERSATURATED GRAPHS AND HYPERGRAPHS [J].
ERDOS, P ;
SIMONOVITS, M .
COMBINATORICA, 1983, 3 (02) :181-192
[6]   ON EXTREMAL PROBLEMS OF GRAPHS AND GENERALIZED GRAPHS [J].
ERDOS, P .
ISRAEL JOURNAL OF MATHEMATICS, 1964, 2 (03) :183-&
[7]  
ERDOS P, 1973, SURVEY COMBINATORIAL, P139
[8]   HYPERGRAPHS DO NOT JUMP [J].
FRANKL, P ;
RODL, V .
COMBINATORICA, 1984, 4 (2-3) :149-159
[9]   ON EMPTY TRIANGLES DETERMINED BY POINTS IN THE PLANE [J].
KATCHALSKI, M ;
MEIR, A .
ACTA MATHEMATICA HUNGARICA, 1988, 51 (3-4) :323-328
[10]  
Lovasz L., 1971, ANN U SCI BUDAP, V14, P107