CONSTRUCTION OF SPHERICAL 4-DESIGNS AND 5-DESIGNS

被引:9
作者
BAJNOK, B [1 ]
机构
[1] UNIV HOUSTON,DEPT APPL MATH,HOUSTON,TX 77002
关键词
D O I
10.1007/BF01787629
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A finite subset X of the d-dimensional unit sphere S(d-1) is called a spherical t-design, if and only if 1/\S(d-1)\ integral S(d-1) f(x)d-omega(x) = 1/\x\ SIGMA-x is-an-element-of X f(x) holds for all polynomials f(x) = f(x1, x2,..., x(d)) of degree at most t. In 1984 Seymour and Zaslavsky proved the existence of spherical t-designs for any t and d, but for sufficiently large \X\. Since spherical designs can be used for numerical integration, it is of interest to give explicit constructions. Mimura gave a construction for t = 2, d is-an-element-of N and \X\ greater-than-or-equal-to n2 for some n2 is-an-element-of N (n2 is sharp). Here we will give an explicit construction for t = 4 and 5, d is-an-element-of N and \X\ greater-than-or-equal-to n4 for some n4 is-an-element-of N.
引用
收藏
页码:219 / 233
页数:15
相关论文
共 5 条
[1]   TIGHT SPHERICAL DESIGNS .1. [J].
BANNAI, E ;
DAMERELL, RM .
JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 1979, 31 (01) :199-207
[2]   TIGHT SPHERICAL DESIGNS, .2. [J].
BANNAI, E ;
DAMERELL, RM .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1980, 21 (FEB) :13-30
[3]  
Delsarte P., 1977, GEOMETRIAE DEDICATA, V6, P363, DOI DOI 10.1007/BF03187604
[4]  
MIMURA Y, IN PRESS GRAPHS COMB
[5]   AVERAGING SETS - A GENERALIZATION OF MEAN-VALUES AND SPHERICAL DESIGNS [J].
SEYMOUR, PD ;
ZASLAVSKY, T .
ADVANCES IN MATHEMATICS, 1984, 52 (03) :213-240