FINDING A CLOSEST VISIBLE VERTEX PAIR BETWEEN 2 POLYGONS

被引:2
作者
AMATO, NM
机构
[1] Department of Computer Science, Texas A and M University, College Station, 77843-3112, TX
关键词
VISIBLE VERTEX DISTANCE; SIMPLE POLYGON; PARALLEL ALGORITHM; PRAM; SEQUENTIAL ALGORITHM;
D O I
10.1007/BF01293668
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Given nonintersecting simple polygoris P and Q, two vertices p is an element of P and q is an element of Q are said to be visible if <($$)over bar>pq does not properly intersect P or Q. We present a parallel algorithm for finding a closest pair among all visible pairs (p,q) p is an element of P and q is an element of Q. The algorithm runs in time O(log n) using O(n) processors on a CREW PRAM, where n = \P\+\Q\. This algorithm can be implemented serially in O(n) time, which gives a new optimal sequential solution for this problem.
引用
收藏
页码:183 / 201
页数:19
相关论文
共 31 条
[1]  
AGGARWAL A, 1989, LECT NOTES COMPUT SC, V382, P115
[2]   PARALLEL COMPUTATIONAL GEOMETRY [J].
AGGARWAL, A ;
CHAZELLE, B ;
GUIBAS, L ;
ODUNLAING, C ;
YAP, C .
ALGORITHMICA, 1988, 3 (03) :293-327
[3]  
AGGARWAL A, 1986, 2ND P ACM S COMP GEO, P285
[4]   DETERMINING THE SEPARATION OF SIMPLE POLYGONS [J].
Amato, Nancy M. .
INTERNATIONAL JOURNAL OF COMPUTATIONAL GEOMETRY & APPLICATIONS, 1994, 4 (04) :457-474
[5]  
AMATO NM, 1992, 1992 P C INF SCI SYS, V2, P800
[6]   PARALLEL ALGORITHMS FOR SOME FUNCTIONS OF 2 CONVEX POLYGONS [J].
ATALLAH, MJ ;
GOODRICH, MT .
ALGORITHMICA, 1988, 3 (04) :535-548
[7]   EFFICIENT PARALLEL SOLUTIONS TO SOME GEOMETRIC PROBLEMS [J].
ATALLAH, MJ ;
GOODRICH, MT .
JOURNAL OF PARALLEL AND DISTRIBUTED COMPUTING, 1986, 3 (04) :492-507
[8]  
ATALLAH MJ, 1991, 2ND P ACM SIAM S DIS, P394
[9]   A NEW LINEAR CONVEX-HULL ALGORITHM FOR SIMPLE POLYGONS [J].
BHATTACHARYA, BK ;
ELGINDY, H .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1984, 30 (01) :85-88
[10]   TRIANGULATING A SIMPLE POLYGON IN LINEAR TIME [J].
CHAZELLE, B .
DISCRETE & COMPUTATIONAL GEOMETRY, 1991, 6 (05) :485-524