COUNTING BICHROMATIC EVOLUTIONARY TREES

被引:1
作者
ERDOS, PL
SZEKELY, LA
机构
[1] HUNGARIAN ACAD SCI, H-1361 BUDAPEST 5, HUNGARY
[2] UNIV BONN, INST OKONOMETRIE & OPERAT RES, W-5300 BONN, GERMANY
[3] EOTVOS LORAND UNIV, H-1364 BUDAPEST 5, HUNGARY
关键词
D O I
10.1016/0166-218X(93)90147-G
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We give a short and transparent bijective proof of the bichromatic binary tree theorem of Carter, Hendy, Penny, Szekely and Wormald on the number of bichromatic evolutionary trees. The proof simplifies M.A. Steel's proof.
引用
收藏
页码:1 / 8
页数:8
相关论文
共 9 条
[1]   ON THE DISTRIBUTION OF LENGTHS OF EVOLUTIONARY TREES [J].
CARTER, M ;
HENDY, M ;
PENNY, D ;
SZEKELY, LA ;
WORMALD, NC .
SIAM JOURNAL ON DISCRETE MATHEMATICS, 1990, 3 (01) :38-47
[2]  
ERDOS PL, 1989, ADV APPL MATH, V10, P488
[3]   A NEW BIJECTION ON ROOTED FORESTS [J].
ERDOS, PL .
DISCRETE MATHEMATICS, 1993, 111 (1-3) :179-188
[4]   PHYLOGENIES FROM MOLECULAR SEQUENCES - INFERENCE AND RELIABILITY [J].
FELSENSTEIN, J .
ANNUAL REVIEW OF GENETICS, 1988, 22 :521-565
[5]   TOWARD DEFINING COURSE OF EVOLUTION - MINIMUM CHANGE FOR A SPECIFIC TREE TOPOLOGY [J].
FITCH, WM .
SYSTEMATIC ZOOLOGY, 1971, 20 (04) :406-&
[6]   UNLIKELIHOOD THAT MINIMAL PHYLOGENIES FOR A REALISTIC BIOLOGICAL STUDY CAN BE CONSTRUCTED IN REASONABLE COMPUTATIONAL TIME [J].
GRAHAM, RL ;
FOULDS, LR .
MATHEMATICAL BIOSCIENCES, 1982, 60 (02) :133-142
[7]   MINIMUM MUTATION FITS TO A GIVEN TREE [J].
HARTIGAN, JA .
BIOMETRICS, 1973, 29 (01) :53-65
[8]  
Moon J.W., 1970, COUNTING LABELLED TR
[9]   DISTRIBUTIONS ON BICOLORED BINARY-TREES ARISING FROM THE PRINCIPLE OF PARSIMONY [J].
STEEL, MA .
DISCRETE APPLIED MATHEMATICS, 1993, 41 (03) :245-261