AN OPTIMAL STOPPING RULE FOR THE NU-METHOD FOR SOLVING ILL-POSED PROBLEMS, USING CHRISTOFFEL FUNCTIONS

被引:4
作者
HANKE, M
ENGL, HW
机构
[1] Institut für Maihematik, Johannes-Kepler-Universität
关键词
D O I
10.1006/jath.1994.1115
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We design an order-optimal stopping rule for the nu-method for solving ill-posed problems with noisy data. The construction of the nu-method is based on a sequence of Jacobi polynomials, and the stopping rule is based on a sequence of related Christoffel functions. The motivation for our stopping criterion arises from a careful comparison between the iterates of the nu-method and the approximations obtained from iterated Tikhonov regularization with (noninteger) order nu. The convergence results rely on asymptotic properties of the Christoffel functions. (C) 1994 Academic Press, Inc.
引用
收藏
页码:89 / 108
页数:20
相关论文
共 20 条
[1]  
BAKUSHINSKII AB, 1984, USSR COMP MATH MATH+, V24, P181, DOI 10.1016/0041-5553(84)90253-2
[2]  
Brakhage H, 1987, INVERSE POSED PROBLE, P165
[3]   A POSTERIORI PARAMETER CHOICE FOR GENERAL REGULARIZATION METHODS FOR SOLVING LINEAR ILL-POSED PROBLEMS [J].
ENGL, HW ;
GFRERER, H .
APPLIED NUMERICAL MATHEMATICS, 1988, 4 (05) :395-417
[4]  
GFRERER H, 1987, MATH COMPUT, V49, P507, DOI 10.1090/S0025-5718-1987-0906185-4
[5]  
Groetsch C. W., 1984, THEORY TIKHONOV REGU
[6]   ACCELERATED LANDWEBER ITERATIONS FOR THE SOLUTION OF ILL-POSED EQUATIONS [J].
HANKE, M .
NUMERISCHE MATHEMATIK, 1991, 60 (03) :341-373
[7]   AN EPSILON-FREE A POSTERIORI STOPPING RULE FOR CERTAIN ITERATIVE REGULARIZATION METHODS [J].
HANKE, M .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1993, 30 (04) :1208-1228
[8]   APPROXIMATION OF GENERALIZED INVERSES BY ITERATED REGULARIZATION [J].
KING, JT ;
CHILLINGWORTH, D .
NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 1979, 1 (05) :499-513
[9]  
KRYANEV AV, 1974, USSR COMP MATH MATH, V14, P24
[10]  
Louis A. K., 1989, INVERSE SCHLECHT GES