AN APPROXIMATE FORMULA FOR COUNTING TREES IN A GRAPH

被引:5
作者
WOJCIECHOWSKI, JM
机构
[1] Warsaw Univ of Science &, Technology, Inst for Electronics, Fundamentals, Warsaw, Pol, Warsaw Univ of Science & Technology, Inst for Electronics Fundamentals, Warsaw, Pol
来源
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS | 1985年 / 32卷 / 04期
关键词
D O I
10.1109/TCS.1985.1085721
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
MATHEMATICAL TECHNIQUES
引用
收藏
页码:382 / 385
页数:4
相关论文
共 16 条
[1]   TREE COUNTING POLYNOMIALS FOR LABELED GRAPHS .1. PROPERTIES [J].
BEDROSIAN, SD .
JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 1981, 312 (06) :417-430
[2]  
BEDROSIAN SD, 1961, IRE T CIRCUIT THEORY, VCT8, P363
[3]  
BOESCH FT, UNPUB FIBONACCI Q
[4]  
BROWN ET, 1958, INTRO THEORY DETERMI
[5]  
Cayley A., 1889, QUATERLY J MATH, V23, P376, DOI [10.1017/cbo9780511703799.010, DOI 10.1017/CBO9780511703799]
[6]  
CVECTKOVIC D, 1980, SPECTRA GRAPHS
[8]  
Harary F., 1969, GRAPH THEORY, DOI DOI 10.21236/AD0705364
[9]  
Kirchhoff G., 1847, ANN PHYS-NEW YORK, V72, P497, DOI [10.1002/andp.18471481202, DOI 10.1002/ANDP.18471481202]
[10]   COUNTING TREES IN A CERTAIN CLASS OF GRAPHS [J].
KLEITMAN, DJ ;
GOLDEN, B .
AMERICAN MATHEMATICAL MONTHLY, 1975, 82 (01) :40-44