ON THE INVERSE CONDUCTIVITY PROBLEM WITH ONE MEASUREMENT

被引:50
作者
ISAKOV, V
POWELL, J
机构
[1] Dept. of Math. and Stat., Wichita State Univ., KS
关键词
D O I
10.1088/0266-5611/6/2/011
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The authors are looking for an open set D entering the coefficient of the elliptic equation div((1+chi(D)) Del u)=0 in a domain Omega when for one given non-zero Neumann data on delta Omega they know the Dirichlet data on a part of delta Omega (a single boundary measurement). Here chi(D) is the indicator function of D. They prove uniqueness for sets D which are convex cylinders or unions of discs whose centres are extreme points of the convex hull of those centres.
引用
收藏
页码:311 / 318
页数:8
相关论文
共 8 条
[1]  
ALESSANDRINI G, 1988, PROBLEMI NON BEN POS, V40
[2]  
BELLOUT H, 1988, ARCH RATION MECH AN, V101, P143, DOI 10.1007/BF00251458
[3]  
Friedman A, 1989, INDIANA U MATH J, V38, P553
[5]  
KOHN R, 1985, COMMUN PURE APPL MAT, V38, P647
[6]  
Ladyzhenskaya O A, 1968, LINEAR QUASILINEAR E
[7]  
Morrey C.B., 1966, GRUNDLEHREN MATH WIS
[8]  
[No title captured]