THE KONDO EFFECT, CONFORMAL FIELD-THEORY AND FUSION RULES

被引:262
作者
AFFLECK, I
LUDWIG, AWW
机构
[1] UNIV BRITISH COLUMBIA,DEPT PHYS,VANCOUVER V6T 2A6,BC,CANADA
[2] SIMON FRASER UNIV,DEPT PHYS,BURNABY V5A 1S6,BC,CANADA
基金
加拿大自然科学与工程研究理事会;
关键词
D O I
10.1016/0550-3213(91)90109-B
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
In an earlier paper, a relationship was established between the Kondo effect and conformal field theory (CFT) with Kac-Moody (KM) symmetry. Here, we study the case of k degenerate bands, corresponding to a level-k KM algebra, in more detail. At the low-temperature fixed point, the Kac-Moody currents absorb the impurity spin (of size s). We hypothesize that the details of this process are governed by the standard KM fusion rules, the analogue of addition of angular momentum in CFT, and show that this leads to a Fermi liquid and to the expected-pi/2 phase shift when s greater-than-or-equal-to k/2.
引用
收藏
页码:849 / 862
页数:14
相关论文
共 25 条
[1]   THE BRANCHING-RULES OF CONFORMAL EMBEDDINGS [J].
ALTSCHULER, D ;
BAUER, M ;
ITZYKSON, C .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1990, 132 (02) :349-364
[2]  
Anderson P. W., 1970, J PHYS C SOLID STATE, V3, P2346
[3]  
ANDERSON PW, 1970, PHYS REV B, V1, P4664
[4]   SOLUTION OF THE MULTICHANNEL KONDO PROBLEM [J].
ANDREI, N ;
DESTRI, C .
PHYSICAL REVIEW LETTERS, 1984, 52 (05) :364-367
[5]   SOLUTION OF THE KONDO PROBLEM [J].
ANDREI, N ;
FURUYA, K ;
LOWENSTEIN, JH .
REVIEWS OF MODERN PHYSICS, 1983, 55 (02) :331-402
[6]   CONFORMAL PROPERTIES OF THE KONDO MODELS [J].
FRADKIN, E ;
VONREICHENBACH, C ;
SCHAPOSNIK, FA .
NUCLEAR PHYSICS B, 1990, 340 (2-3) :692-702
[7]   BOSONIZATION OF THE KONDO PROBLEM [J].
FRADKIN, E ;
VONREICHENBACH, C ;
SCHAPOSNIK, FA .
NUCLEAR PHYSICS B, 1989, 316 (03) :710-734
[8]   STRING THEORY ON GROUP-MANIFOLDS [J].
GEPNER, D ;
WITTEN, E .
NUCLEAR PHYSICS B, 1986, 278 (03) :493-549
[9]  
Goddard P., 1986, INT J MOD PHYS A, V1, P303, DOI [10.1142/S0217751X86000149, DOI 10.1142/S0217751X86000149]
[10]   MODULAR AND CONFORMAL-INVARIANCE CONSTRAINTS IN REPRESENTATION-THEORY OF AFFINE ALGEBRAS [J].
KAC, VG ;
WAKIMOTO, M .
ADVANCES IN MATHEMATICS, 1988, 70 (02) :156-236