FROM GEOMETRIC-QUANTIZATION TO CONFORMAL FIELD-THEORY

被引:89
作者
ALEKSEEV, A
SHATASHVILI, S
机构
[1] Leningrad Steklov Mathematical Institute, Leningrad, SU-191011
关键词
D O I
10.1007/BF02097053
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Investigation of 2 d conformal field theory in terms of geometric quantization is given. We quantize the so-called model space of the compact Lie group, Virasoro group and Kac-Moody group. In particular, we give a geometrical interpretation of the Virasoro discrete series and explain that this type of geometric quantization reproduces the chiral part of CFT (minimal models, 2 d-gravity, WZNW theory). In the appendix we discuss the relation between classical (constant)r-matrices and this geometrical approach. © 1990 Springer-Verlag.
引用
收藏
页码:197 / 212
页数:16
相关论文
共 18 条
[1]  
ALEKSEEV A, IN PRESS J GEOM PHYS
[2]  
ALEKSEEV A, 1988, LOMIE1688 PREPR
[3]   PROPAGATOR FOR THE RELATIVISTIC SPINNING PARTICLE VIA FUNCTIONAL INTEGRAL OVER TRAJECTORIES [J].
ALEKSEEV, AY ;
SHATASHVILI, SL .
MODERN PHYSICS LETTERS A, 1988, 3 (16) :1551-1559
[4]  
BABELON O, 1988, PAR LPTHE8833 PREPR
[5]  
BELAVIN AA, 1989, COMMUN MATH PHYS, V126, P49
[6]  
BERNSTEIN J, 1976, P PETROVSKY SEMINAR, V2, P3
[7]  
ELITZUR S, 1989, IASSNSHEP8920 PREPR
[8]  
Faddeev L.D., 1986, LECT NOTES PHYS, V246, P166, DOI 10.1007/3-540-16452-9_10
[9]   BRST APPROACH TO MINIMAL MODELS [J].
FELDER, G .
NUCLEAR PHYSICS B, 1989, 317 (01) :215-236
[10]   NEW QUANTUM TREATMENT OF LIOUVILLE FIELD-THEORY [J].
GERVAIS, JL ;
NEVEU, A .
NUCLEAR PHYSICS B, 1983, 224 (02) :329-348