GRADED RIEMANN SURFACES AND KRICHEVER-NOVIKOV ALGEBRAS

被引:8
作者
BRYANT, P
机构
[1] Department of Pure Mathematics and Mathematical Statistics, Cambridge, CB2 1SB
关键词
AMS subject classifications (1980): 81E10; 53C20; 17B65;
D O I
10.1007/BF01045879
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Following the work of Krichever and Novikov, Bonora, Martellini, Rinaldi and Russo defined a superalgebra associated to each compact Riemann surface with spin structure. Noting that this data determines a graded Riemann surface, we find a natural interpretation of the BMRR-algebra in terms of the geometry of graded Riemann surfaces. We also discuss the central extensions of these algebras (correcting the form of the central extension given by Bonora et al.). It is hoped that this work will be the first step towards defining Krichever-Novikov algebras for (the more general) super-Riemann surfaces; in particular we emphasise the importance of graded conformal vectorfields. © 1990 Kluwer Academic Publishers.
引用
收藏
页码:97 / 108
页数:12
相关论文
共 13 条
[1]  
BARANOV A, 1988, COMMUN MATH PHYS, V111, P373
[2]   GRADED RIEMANN SURFACES [J].
BATCHELOR, M ;
BRYANT, P .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1988, 114 (02) :243-255
[3]  
BATCHELOR M, 1985, MATH ASPECTS SUPERSP
[4]   VIRASORO-TYPE ALGEBRAS AND BRST OPERATORS ON RIEMANN SURFACES [J].
BONORA, L ;
BREGOLA, M ;
COTTARAMUSINO, P ;
MARTELLINI, M .
PHYSICS LETTERS B, 1988, 205 (01) :53-56
[5]  
BONORO L, 1988, NEVEUSCHWARZ RAMOND
[6]   MODULAR GEOMETRY OF SUPERCONFORMAL FIELD-THEORY [J].
COHN, JD .
NUCLEAR PHYSICS B, 1988, 306 (02) :239-270
[7]   SUPER RIEMANN SURFACES - UNIFORMIZATION AND TEICHMULLER THEORY [J].
CRANE, L ;
RABIN, JM .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1988, 113 (04) :601-623
[8]  
Green M.B., 1987, SUPERSTRING THEORY, V1
[9]  
Krichever I., 1987, FUNKTSIONAL ANAL PRI, V21, P47, DOI DOI 10.1007/BF01077803
[10]  
Krichever KN] Igor Moiseevich, 1987, FUNKTSIONAL ANAL PRI, V21, P46