THE DUAL LEAST ACTION PROBLEM FOR AN IDEAL, INCOMPRESSIBLE FLUID

被引:47
作者
BRENIER, Y
机构
[1] Laboratoire d'Analyse Numérique, Université de Paris 6, Paris Cedex 05
关键词
D O I
10.1007/BF00375139
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
[No abstract available]
引用
收藏
页码:323 / 351
页数:29
相关论文
共 20 条
[2]   TOPOLOGICAL METHODS IN HYDRODYNAMICS [J].
ARNOLD, VI ;
KHESIN, BA .
ANNUAL REVIEW OF FLUID MECHANICS, 1992, 24 :145-166
[3]  
Bourguignon J.P., 1974, J FUNCT ANAL, V15, P341, DOI DOI 10.1016/0022-1236(74)90027-5
[4]  
BRENIER Y, 1991, COMMUN PUR APPL MATH, V64, P375
[5]  
BRENIER Y, 1992, JUI JOURN EQ DER PAR
[6]  
BRENIER Y, 1990, J AM MATH SOC, V2, P225
[7]  
Brezis H., 1983, ANAL FONCTIONNELLE T
[8]  
DACOROGNA B, 1990, ANN I H POINCARE-AN, V7, P1
[9]   OSCILLATIONS AND CONCENTRATIONS IN WEAK SOLUTIONS OF THE INCOMPRESSIBLE FLUID EQUATIONS [J].
DIPERNA, RJ ;
MAJDA, AJ .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1987, 108 (04) :667-689
[10]   GROUPS OF DIFFEOMORPHISMS AND MOTION OF AN INCOMPRESSIBLE FLUID [J].
EBIN, DG ;
MARSDEN, J .
ANNALS OF MATHEMATICS, 1970, 92 (01) :102-&