EXACT FIRST-PASSAGE EXPONENTS OF 1D DOMAIN GROWTH - RELATION TO A REACTION-DIFFUSION MODEL

被引:227
作者
DERRIDA, B [1 ]
HAKIM, V [1 ]
PASQUIER, V [1 ]
机构
[1] CENS,SERV PHYS THEOR,F-91191 GIF SUR YVETTE,FRANCE
关键词
D O I
10.1103/PhysRevLett.75.751
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In the zero temperature Glauber dynamics of the ferromagnetic Ising or q-state Potts model, the size of domains is known to grow like t(1/2). Recent simulations have shown that the fraction r(q, t) of spins, which have never flipped up to time t, decays like the power law r(q, t) similar to t(-theta(q)) with a nontrivial dependence of the exponent theta(q) on q and on space dimension. By mapping the problem on an exactly soluble one-species coagulation model (A + A --> A), we obtain the exact expression of theta(q) in dimension one.
引用
收藏
页码:751 / 754
页数:4
相关论文
共 35 条