A GENERAL-THEORY OF DUAL OPTIMIZATION PROBLEMS

被引:18
作者
SINGER, I [1 ]
机构
[1] INST MATH,R-70109 BUCHAREST,ROMANIA
关键词
D O I
10.1016/0022-247X(86)90046-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
引用
收藏
页码:77 / 130
页数:54
相关论文
共 36 条
[1]  
[Anonymous], 1966, Fonctionnelles convexes
[2]   DUALITY, HAAR PROGRAMS, AND FINITE SEQUENCE SPACES [J].
CHARNES, A ;
KORTANEK, K ;
COOPER, WW .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1962, 48 (05) :783-&
[3]  
CROUZEIX JP, 1977, THESIS U CLERMONT
[4]   PHI-CONVEXITY IN EXTREMAL PROBLEMS [J].
DOLECKI, S ;
KURCYUSZ, S .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1978, 16 (02) :277-300
[5]   ABSTRACT STUDY OF OPTIMALITY CONDITIONS [J].
DOLECKI, S .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1980, 73 (01) :24-48
[6]   A MULTIPHASE-DUAL ALGORITHM FOR ZERO-1 INTEGER PROGRAMMING PROBLEM [J].
GLOVER, F .
OPERATIONS RESEARCH, 1965, 13 (06) :879-&
[7]   EXTENSIONS OF LAGRANGE MULTIPLIERS IN NONLINEAR PROGRAMMING [J].
GOULD, FJ .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1969, 17 (06) :1280-&
[8]   SURROGATE MATHEMATICAL PROGRAMMING [J].
GREENBERG, HJ ;
PIERSKALLA, WP .
OPERATIONS RESEARCH, 1970, 18 (05) :924-+
[9]  
HOFFMANN A, 1981, INT TAGUNG MATH OPTI, P65
[10]  
JOLY JL, 1971, REV FR INFORM RECH O, V5, P3