CONJECTURE RELATING PERCOLATION, BRANCHED POLYMERS AND LINEAR WALKS

被引:1
作者
ALEXANDROWICZ, Z
机构
关键词
D O I
10.1016/0375-9601(84)90922-8
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
引用
收藏
页码:383 / 386
页数:4
相关论文
共 18 条
[1]   POSSIBLE BREAKDOWN OF THE ALEXANDER-ORBACH RULE AT LOW DIMENSIONALITIES [J].
AHARONY, A ;
STAUFFER, D .
PHYSICAL REVIEW LETTERS, 1984, 52 (26) :2368-2370
[2]  
ALEXANDER S, 1982, J PHYS LETT-PARIS, V43, pL625, DOI 10.1051/jphyslet:019820043017062500
[3]   CRITICALLY BRANCHED CHAINS AND PERCOLATION CLUSTERS [J].
ALEXANDROWICZ, Z .
PHYSICS LETTERS A, 1980, 80 (04) :284-286
[4]   SELF-AVOIDING WALKS OF CONTINUOUS SPATIAL DIMENSIONALITY [J].
ALEXANDROWICZ, Z .
PHYSICAL REVIEW LETTERS, 1983, 50 (10) :736-739
[5]  
ALEXANDROWICZ Z, UNPUB KINETICS FORMA
[6]  
AMIT D, 1979, J PHYS A, V9, P1441
[7]  
de Gennes P. G., 1976, RECHERCHE, V7, P919
[8]   APPLICATION OF THE PHENOMENOLOGICAL RENORMALIZATION TO PERCOLATION AND LATTICE ANIMALS IN DIMENSION-2 [J].
DERRIDA, B ;
DESEZE, L .
JOURNAL DE PHYSIQUE, 1982, 43 (03) :475-483
[10]   NEW METHOD FOR GROWING BRANCHED POLYMERS AND LARGE PERCOLATION CLUSTERS BELOW PC [J].
DJORDJEVIC, ZV ;
HAVLIN, S ;
STANLEY, HE ;
WEISS, GH .
PHYSICAL REVIEW B, 1984, 30 (01) :478-481