ON THE REGULARIZATION OF PROJECTION METHODS FOR SOLVING ILL-POSED PROBLEMS

被引:116
作者
PLATO, R [1 ]
VAINIKKO, G [1 ]
机构
[1] STATE UNIV TARTU,DEPT MATH,TARTU 202400,ESTONIA,USSR
关键词
Subject Classifications: AMS(MOS):65J10; CR:; G; 1.8;
D O I
10.1007/BF01386397
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we consider a class of regularization methods for a discretized version of an operator equation (which includes the case that the problem is ill-posed) with approximately given right-hand side. We propose an a priori- as well as an a posteriori parameter choice method which is similar to the discrepancy principle of Ivanov-Morozov. From results on fractional powers of selfadjoint operators we obtain convergence rates, which are (in many cases) the same for both parameter choices. © 1990 Springer-Verlag.
引用
收藏
页码:63 / 79
页数:17
相关论文
共 21 条
[1]   A POSTERIORI PARAMETER CHOICE FOR GENERAL REGULARIZATION METHODS FOR SOLVING LINEAR ILL-POSED PROBLEMS [J].
ENGL, HW ;
GFRERER, H .
APPLIED NUMERICAL MATHEMATICS, 1988, 4 (05) :395-417
[2]  
GFRERER H, 1987, MATH COMPUT, V49, P507, DOI 10.1090/S0025-5718-1987-0906185-4
[3]  
GFRERER H, 1987, MATH COMPUT, V49, pS5, DOI 10.2307/2008341
[4]  
Groetsch C. W., 1984, THEORY TIKHONOV REGU
[5]  
HAMARIK UA, 1984, UCH ZAP TARTU GOS U, V672, P27
[6]   A VARIANT OF FINITE-DIMENSIONAL TIKHONOV REGULARIZATION WITH A-POSTERIORI PARAMETER CHOICE [J].
KING, JT ;
NEUBAUER, A .
COMPUTING, 1988, 40 (02) :91-109
[7]  
Krasnosel'skii M.A., 1976, INTEGRAL OPERATORS S
[8]  
Louis A. K., 1989, INVERSE SCHLECHT GES
[9]  
Morozov VA., 1966, SOV MATH DOKL, V7, P414
[10]  
NATTERER F, 1977, NUMER MATH, V28, P511