THE STRUCTURE, OF THE RATIONAL SOLUTIONS TO THE BOUSSINESQ EQUATION

被引:43
作者
GALKIN, VM [1 ]
PELINOVSKY, DE [1 ]
STEPANYANTS, YA [1 ]
机构
[1] RUSSIAN ACAD SCI,INST APPL PHYS,NIZHNII NOVGOROD 603600,RUSSIA
来源
PHYSICA D | 1995年 / 80卷 / 03期
关键词
D O I
10.1016/0167-2789(94)00178-S
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Rational solutions of the one-dimensional Boussinesq equation both with zero and nonzero boundary conditions at the infinity are obtained by reducing the known solutions of the Kadomtsev-Petviashvili equation. The structure of the found solutions generalizes a family of rational solutions to the Korteweg-de Vries equation to the case of two-wave processes.
引用
收藏
页码:246 / 255
页数:10
相关论文
共 27 条
[1]   SOLITONS AND RATIONAL SOLUTIONS OF NON-LINEAR EVOLUTION EQUATIONS [J].
ABLOWITZ, MJ ;
SATSUMA, J .
JOURNAL OF MATHEMATICAL PHYSICS, 1978, 19 (10) :2180-2186
[2]   RATIONAL AND ELLIPTIC SOLUTIONS OF KORTEWEG DE-VRIES EQUATION AND A RELATED MANY-BODY PROBLEM [J].
AIRAULT, H ;
MCKEAN, HP ;
MOSER, J .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1977, 30 (01) :95-148
[3]  
BOUSSINESQ J, 1872, J MATH PURE APPL, V7, P55
[4]  
CHOODNOVSKY DV, 1977, NUOVO CIMENTO B, V40, P399
[5]   VERTEX OPERATORS AND TAU-FUNCTIONS TRANSFORMATION GROUPS FOR SOLITON-EQUATIONS .2. [J].
DATE, E ;
KASHIWARA, M ;
MIWA, T .
PROCEEDINGS OF THE JAPAN ACADEMY SERIES A-MATHEMATICAL SCIENCES, 1981, 57 (08) :387-392
[6]  
DATE E, 1981, P JAPAN ACAD A, V57, P342
[7]   SOLITON-SOLUTIONS OF THE KORTEWEG-DEVRIES AND KADOMTSEV-PETVIASHVILI EQUATIONS - THE WRONSKIAN TECHNIQUE [J].
FREEMAN, NC ;
NIMMO, JJC .
PHYSICS LETTERS A, 1983, 95 (01) :1-3
[8]   ON THE ANALYTICAL DESCRIPTION OF MULTISOLITONS WITHIN THE KP1 EQUATION [J].
GALKIN, VM ;
STEPANYANTS, YA .
PHYSICS LETTERS A, 1992, 167 (02) :172-174
[9]  
GALKIN VM, 1992, OSCILLATIONS WAVES D, P15
[10]  
GANTMAKHER FR, 1966, MATRIX THEORY, P20