FLOW EQUATIONS FOR N-POINT FUNCTIONS AND BOUND-STATES

被引:218
作者
ELLWANGER, U
机构
[1] Institut für Theoretische Physik, Universität Heidelberg, Heidelberg, D-69120
来源
ZEITSCHRIFT FUR PHYSIK C-PARTICLES AND FIELDS | 1994年 / 62卷 / 03期
关键词
D O I
10.1007/BF01555911
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We discuss the exact renormalization group or flow equation for the effective action and its decomposition into one particle irreducible N point functions. With the help of a truncated flow equation for the four point function we study the bound state problem for scalar fields. A combination of analytic and numerical methods is proposed, which is applied to the Wick-Cutkosky model and a QCD-motivated interaction. We present results for the bound state masses and the Bethe-Salpeter wave function.
引用
收藏
页码:503 / 510
页数:8
相关论文
共 25 条
[1]   AVERAGE ACTION FOR MODELS WITH FERMIONS [J].
BORNHOLDT, S ;
WETTERICH, C .
ZEITSCHRIFT FUR PHYSIK C-PARTICLES AND FIELDS, 1993, 58 (04) :585-593
[2]   FLOW EQUATIONS FOR THE HIGGS TOP SYSTEM [J].
ELLWANGER, U ;
VERGARA, L .
NUCLEAR PHYSICS B, 1993, 398 (01) :52-68
[3]   COLLECTIVE FIELDS AND FLOW EQUATIONS [J].
ELLWANGER, U .
ZEITSCHRIFT FUR PHYSIK C-PARTICLES AND FIELDS, 1993, 58 (04) :619-627
[4]   BETHE-SALPETER-EQUATION WITH CONFINING KERNEL - CORRECT NON RELATIVISTIC LIMIT AND THE CONSTANT TO BE ADDED TO THE LINEAR POTENTIAL [J].
GROMES, D .
ZEITSCHRIFT FUR PHYSIK C-PARTICLES AND FIELDS, 1981, 11 (02) :147-152
[5]   A RENORMALIZATION-GROUP PROOF OF PERTURBATIVE RENORMALIZABILITY [J].
HURD, TR .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1989, 124 (01) :153-168
[6]  
ITZYKSON C, 1980, QUANTUM FIELD THEORY, pCH10
[7]   PERTURBATIVE RENORMALIZATION OF COMPOSITE-OPERATORS VIA FLOW EQUATIONS-I [J].
KELLER, G ;
KOPPER, C .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1992, 148 (03) :445-467
[8]   PERTURBATIVE RENORMALIZATION OF QED VIA FLOW EQUATIONS [J].
KELLER, G ;
KOPPER, C .
PHYSICS LETTERS B, 1991, 273 (03) :323-332
[9]  
KELLER G, 1992, HELV PHYS ACTA, V65, P32
[10]   PERTURBATIVE RENORMALIZATION OF COMPOSITE-OPERATORS VIA FLOW EQUATIONS .2. SHORT DISTANCE EXPANSION [J].
KELLER, G ;
KOPPER, C .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1993, 153 (02) :245-276