VOLTAGE-DEPENDENT CALCIUM CHANNELS REGULATE GH4 PITUITARY CELL-PROLIFERATION AT 2 STAGES OF THE CELL-CYCLE

被引:32
作者
RAMSDELL, JS
机构
[1] Division of Molecular and Cellular Endocrinology, Department of Anatomy and Cell Biology, Medical University of South Carolina, Charleston, South Carolina
关键词
D O I
10.1002/jcp.1041460203
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Calcium is an intracellular signal implicated in the regulation of cell proliferation. We have examined the growth regulatory role of voltage-dependent calcium channels (VDCC) in a rat pituitary cell line (GH4C1) that expresses two well-characterized VDCC subtypes (L and T) and is growth-inhibited by several agents known to enhance calcium entry. Thyrotropin-releasing hormone (TRH), tetradecanoylphorbol acetate (TPA), and epidermal growth factor (EGF), each known to enhance calcium entry in GH4 cells, decrease GH4 cell number and incorporation of [H-3]-thymidine. The growth inhibitory action of these agents is cytostatic with a predominant effect to block G1 cells from entering S-phase. We next examined the growth regulatory action of pharmacologic agents that interact directly and specifically with type L VDCC. Activation of type L VDCC with the dihydropyridine BAY K8644 inhibits GH4 proliferation as measured by cell number and [H-3]-thymidine incorporation. This action of BAY K8644 is enhanced by a submaximal K+-maintained depolarization, and the growth inhibitory action of these agents is also cytostatic as evident by the block of G1 cells from entering S-phase. Nimodipine, an antagonist specific for type L VDCC blocks (IC50 = 30 nM) BAY K8644-inhibited cell proliferation by substantially reducing the S-phase block. Taken together these findings indicate that calcium entry through type L VDCC inhibits GH4 cell proliferation by blocking entry into S-phase. By contrast, nimodipine caused only a small reversal of the TRH-induced S-phase block, suggesting that TRH inhibits proliferation by a mechanism that differs at least in part from L-channel activation. Unexpectedly, nimodipine, given alone, caused a substantial inhibition of GH4 cell proliferation. This action of nimodipine was cytostatic, yet differed from calcium channel activators in that the percentage of S-phase cells was unchanged whereas G2-M-phase cells increased with a parallel decrease in G1-phase cells. Similar effects were also observed with other classes of calcium channel blockers. Taken together these results indicate that calcium entry through VDCC regulates GH4 cell proliferation differently depending on the stage of the cell cycle. In G1-phase cells, sustained entry of calcium through type L VDCC blocks entry into S-phase. In G2-M-phase cells entry of calcium promotes progression through mitosis.
引用
收藏
页码:197 / 206
页数:10
相关论文
共 50 条
[1]  
ALBERT PR, 1987, J BIOL CHEM, V262, P6577
[2]  
ALBERT PR, 1985, J BIOL CHEM, V260, P8746
[3]  
ALBERT PR, 1984, J BIOL CHEM, V259, P5827
[4]   2 DISTINCT POPULATIONS OF CALCIUM CHANNELS IN A CLONAL LINE OF PITUITARY-CELLS [J].
ARMSTRONG, CM ;
MATTESON, DR .
SCIENCE, 1985, 227 (4682) :65-67
[5]  
BODER GB, 1983, EUR J CELL BIOL, V31, P349
[6]   CALMODULIN AND THE CELL-CYCLE - INVOLVEMENT IN REGULATION OF CELL-CYCLE PROGRESSION [J].
CHAFOULEAS, JG ;
BOLTON, WE ;
HIDAKA, H ;
BOYD, AE ;
MEANS, AR .
CELL, 1982, 28 (01) :41-50
[7]   NIMODIPINE BLOCK OF CALCIUM CHANNELS IN RAT ANTERIOR-PITUITARY-CELLS [J].
COHEN, CJ ;
MCCARTHY, RT .
JOURNAL OF PHYSIOLOGY-LONDON, 1987, 387 :195-225
[8]  
DAY RN, 1988, J BIOL CHEM, V263, P15915
[9]   CELL-CYCLE ANALYSIS USING A MONOCLONAL-ANTIBODY TO BRDURD [J].
DEAN, PN ;
DOLBEARE, F ;
GRATZNER, H ;
RICE, GC ;
GRAY, JW .
CELL AND TISSUE KINETICS, 1984, 17 (04) :427-436
[10]   INTRACELLULAR CA-2+-DEPENDENT PROTEIN-KINASE-C ACTIVATION MIMICS DELAYED-EFFECTS OF THYROTROPIN-RELEASING-HORMONE ON CLONAL PITUITARY CELL EXCITABILITY [J].
DUFY, B ;
JAKEN, S ;
BARKER, JL .
ENDOCRINOLOGY, 1987, 121 (02) :793-802