ON THE ERROR BEHAVIOR OF THE REDUCED BASIS TECHNIQUE FOR NON-LINEAR FINITE-ELEMENT APPROXIMATIONS

被引:90
作者
FINK, JP
RHEINBOLDT, WC
机构
来源
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK | 1983年 / 63卷 / 01期
关键词
D O I
10.1002/zamm.19830630105
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
引用
收藏
页码:21 / 28
页数:8
相关论文
共 22 条
[1]   AUTOMATIC CHOICE OF GLOBAL SHAPE FUNCTIONS IN STRUCTURAL-ANALYSIS [J].
ALMROTH, BO ;
STERN, P ;
BROGAN, FA .
AIAA JOURNAL, 1978, 16 (05) :525-528
[2]  
ALMROTH BO, 1981, AIAA NATIONAL C, P286
[3]  
Berger M.S., 1977, PURE APPL MATH
[4]  
Borisovich Y. G., 1977, RUSS MATH SURV+, V32, P1, DOI 10.1070/RM1977v032n04ABEH001638
[5]   FINITE DIMENSIONAL APPROXIMATION OF NON-LINEAR PROBLEMS .2. LIMIT POINTS [J].
BREZZI, F ;
RAPPAZ, J ;
RAVIART, PA .
NUMERISCHE MATHEMATIK, 1981, 37 (01) :1-28
[6]  
BREZZI F, 1981, NUMER MATH, V38, P1, DOI 10.1007/BF01395805
[7]   FINITE DIMENSIONAL APPROXIMATION OF NON-LINEAR PROBLEMS .1. BRANCHES OF NONSINGULAR SOLUTIONS [J].
BREZZI, F ;
RAPPAZ, J ;
RAVIART, PA .
NUMERISCHE MATHEMATIK, 1980, 36 (01) :1-25
[8]   NUMERICAL METHODS OF HIGH-ORDER ACCURACY FOR NONLINEAR BOUNDARY VALUE PROBLEMS .2. NONLINEAR BOUNDARY CONDITIONS [J].
CIARLET, PG ;
SCHULTZ, MH ;
VARGA, RS .
NUMERISCHE MATHEMATIK, 1968, 11 (04) :331-&
[9]   NUMERICAL METHODS OF HIGH-ORDER ACCURACY FOR NONLINEAR BOUNDARY VALUE PROBLEMS .4. PERIODIC BOUNDARY CONDITIONS [J].
CIARLET, PG ;
SCHULTZ, MH ;
VARGA, RS .
NUMERISCHE MATHEMATIK, 1968, 12 (04) :266-&
[10]   NUMERICAL METHODS OF HIGH-ORDER ACCURACY FOR NONLINEAR BOUNDARY VALUE PROBLEMS .V. MONOTONE OPERATOR THEORY [J].
CIARLET, PG ;
SCHULTZ, MH ;
VARGA, RS .
NUMERISCHE MATHEMATIK, 1969, 13 (01) :51-&