TOWARDS PURE ADAPTIVE SEARCH

被引:5
作者
BARITOMPA, WP
BAOPING, Z
MLADINEO, RH
WOOD, GR
ZABINSKY, ZB
机构
[1] UNIV CANTERBURY,DEPT MATH,CHRISTCHURCH 1,NEW ZEALAND
[2] RIDER UNIV,LAWRENCEVILLE,NJ
[3] CENT QUEENSLAND UNIV,DEPT MATH & COMP,ROCKHAMPTON,QLD 4702,AUSTRALIA
[4] UNIV WASHINGTON,IND ENGN PROGRAM,SEATTLE,WA 98195
关键词
GLOBAL OPTIMIZATION; STOCHASTIC; RANDOM SEARCH; LOCALIZATION; COMPLEXITY;
D O I
10.1007/BF01100207
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
The algorithm known as Pure Adaptive Search is a global optimisation ideal with desirable complexity. In this paper we temper it to a framework we term Somewhat Adaptive Search. This retains the desirable complexity, but allows scope for a practical realisation. We introduce a new algorithm termed Pure Localisation Search which attempts to reach the practical ideal. For a certain class of one variable functions the gap is bridged.
引用
收藏
页码:93 / 110
页数:18
相关论文
共 17 条
[1]  
ARCHETTI F, 1978, GLOBAL OPTIMISATION, V2
[2]   CUSTOMIZING METHODS FOR GLOBAL OPTIMIZATION - A GEOMETRIC VIEWPOINT [J].
BARITOMPA, W .
JOURNAL OF GLOBAL OPTIMIZATION, 1993, 3 (02) :193-212
[3]   ITERATIVE METHODS FOR THE LOCALIZATION OF THE GLOBAL MAXIMUM [J].
BASSO, P .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1982, 19 (04) :781-792
[4]  
Chuyan O. R., 1990, Journal of Complexity, V6, P119, DOI 10.1016/0885-064X(90)90014-5
[5]   RANDOM HOMEOMORPHISMS [J].
GRAF, S ;
MAULDIN, RD ;
WILLIAMS, SC .
ADVANCES IN MATHEMATICS, 1986, 60 (03) :239-359
[6]   GLOBAL OPTIMIZATION OF UNIVARIATE LIPSCHITZ FUNCTIONS .1. SURVEY AND PROPERTIES [J].
HANSEN, P ;
JAUMARD, B ;
LU, SH .
MATHEMATICAL PROGRAMMING, 1992, 55 (03) :251-272
[7]   GLOBAL OPTIMIZATION OF UNIVARIATE LIPSCHITZ FUNCTIONS .2. NEW ALGORITHMS AND COMPUTATIONAL COMPARISON [J].
HANSEN, P ;
JAUMARD, B ;
LU, SH .
MATHEMATICAL PROGRAMMING, 1992, 55 (03) :273-292
[8]   AN ALGORITHM FOR FINDING THE GLOBAL MAXIMUM OF A MULTIMODAL, MULTIVARIATE FUNCTION [J].
MLADINEO, RH .
MATHEMATICAL PROGRAMMING, 1986, 34 (02) :188-200
[9]  
PATEL NR, 1988, MATH PROGRAM, V43, P317
[10]  
Piyavski S.A., 1972, USSR COMP MATH MATH, V12, P57, DOI DOI 10.1016/0041-5553(72)90115-2