FIXED-POINT APPROACH FOR COMPLEMENTARITY-PROBLEMS

被引:49
作者
NOOR, MA [1 ]
机构
[1] KING SAUD UNIV,COLL SCI,DEPT MATH,RIYADH,SAUDI ARABIA
关键词
D O I
10.1016/0022-247X(88)90413-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
引用
收藏
页码:437 / 448
页数:12
相关论文
共 18 条
[1]   NEWTONS METHOD FOR LINEAR COMPLEMENTARITY-PROBLEMS [J].
AGANAGIC, M .
MATHEMATICAL PROGRAMMING, 1984, 28 (03) :349-362
[3]  
AHN BH, 1983, MATH PROGRAM, V26, P295, DOI 10.1007/BF02591868
[4]  
Cottle R.W., 1968, LINEAR ALGEBRA APPL, V1, P103, DOI DOI 10.1016/0024-3795(68)90052-9
[5]  
Cottle RW, 1976, S MATH, V19, P177
[6]  
Crank J., 1984, FREE MOVING BOUNDARY
[7]  
FANG SC, 1980, IEEE T AUTOMAT CONTR, V25, P1225, DOI 10.1109/TAC.1980.1102537
[8]  
Karamardian S., 1971, J OPTIMIZ THEORY APP, V8, P161
[9]   BIMATRIX EQUILIBRIUM POINTS AND MATHEMATICAL-PROGRAMMING [J].
LEMKE, CE .
MANAGEMENT SCIENCE, 1965, 11 (07) :681-689
[10]   AN ALTERNATING DIRECTION IMPLICIT ALGORITHM FOR THE SOLUTION OF LINEAR COMPLEMENTARITY-PROBLEMS ARISING FROM FREE-BOUNDARY PROBLEMS [J].
LIN, Y ;
CRYER, CW .
APPLIED MATHEMATICS AND OPTIMIZATION, 1985, 13 (01) :1-17