CONVENTIONAL MODELING OF THE MULTILAYER PERCEPTRON USING POLYNOMIAL BASIS FUNCTIONS

被引:34
作者
CHEN, MS
MANRY, MT
机构
[1] Department of Electrical Engineering, University of Texas at Arlington, Arlington
来源
IEEE TRANSACTIONS ON NEURAL NETWORKS | 1993年 / 4卷 / 01期
基金
美国国家航空航天局;
关键词
D O I
10.1109/72.182712
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this letter, we present a new technique for modeling the multilayer perceptron (MLP) neural network, in which input and hidden units are represented by polynomial basis functions (PBF's). The MLP output is expressed as a linear combination of the PBF's and can therefore be expressed as a polynomial function of its inputs. Thus the MLP is isomorphic to conventional polynomial discriminant classifiers or Volterra filters. The modeling technique is successfully applied to several trained MLP networks.
引用
收藏
页码:164 / 166
页数:3
相关论文
共 17 条
[1]  
CHEN MS, 1990, P IJCNN, V1, P643
[2]  
CHEN MS, 1990, SEP C REC MIDC DALL, P414
[3]  
CHEN MS, P IJCNN 91 SEATTLE, pI295
[4]  
DAVIS GW, P IJCNN 91, P727
[5]  
Duda R. O., 1973, PATTERN CLASSIFICATI, V3
[6]  
GALLINARI P, 1988, P IJCNN, V1, P391
[7]  
GEORGE N, 1989, SPIE, V1134, P96
[8]  
GOVIND G, 1990, P INT C SYSTEMS ENGI
[9]   A DIGITAL METHOD OF MODELING QUADRATICALLY NONLINEAR-SYSTEMS WITH A GENERAL RANDOM INPUT [J].
ILKIM, K ;
POWERS, EJ .
IEEE TRANSACTIONS ON ACOUSTICS SPEECH AND SIGNAL PROCESSING, 1988, 36 (11) :1758-1769
[10]  
NILSSON NJ, 1990, MATH F LEARNING MACH