THE EFFECTIVE GAUGE FIELD ACTION OF A SYSTEM OF NONRELATIVISTIC ELECTRONS

被引:13
作者
FROHLICH, J
GOTSCHMANN, R
MARCHETTI, PA
机构
[1] UNIV PADUA, DIPARTIMENTO FIS, I-35131 PADUA, ITALY
[2] IST NAZL FIS NUCL, I-35131 PADUA, ITALY
[3] UNIV FRIBOURG, INST PHYS THEOR, CH-1700 FRIBOURG, SWITZERLAND
关键词
D O I
10.1007/BF02101241
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider a system of free, non-relativistic electrons at zero temperature and positive density, coupled to an arbitrary, external electromagnetic vector potential, A. By integrating out the electron degrees of freedom we obtain the effective action for A. We show that, in the scaling limit, this effective action is quadratic in A and can be viewed as an integral over the Fermi sphere of effective actions of (1 + 1)-dimensional, chiral Schwinger models. We use this result to elucidate Luther-Haldane bosonization of systems of non-relativistic electrons. We also study systems of weakly coupled interacting electrons for which the BCS channel is turned off. Using the quadratic dependence of the effective action on A, we show that, in the scaling limit, the RPA yields the dominant contribution.
引用
收藏
页码:417 / 452
页数:36
相关论文
共 24 条
[1]  
BENFATTO G, J STAT PHYS, V59, P541
[2]   BOSONIZATION OF FERMI LIQUIDS [J].
CASTRO NETO, AH ;
FRADKIN, E .
PHYSICAL REVIEW B, 1994, 49 (16) :10877-10892
[3]   AN INTRINSIC 1/N EXPANSION FOR MANY-FERMION SYSTEMS [J].
FELDMAN, J ;
MAGNEN, J ;
RIVASSEAU, V ;
TRUBOWITZ, E .
EUROPHYSICS LETTERS, 1993, 24 (06) :437-442
[4]   2-DIMENSIONAL MANY-FERMION SYSTEMS AS VECTOR MODELS [J].
FELDMAN, J ;
MAGNEN, J ;
RIVASSEAU, V ;
TRUBOWITZ, E .
EUROPHYSICS LETTERS, 1993, 24 (07) :521-526
[5]  
FELDMAN J, 1990, HELV PHYS ACTA, V63, P156
[6]  
FELDMAN J, 1991, HELV PHYS ACTA, V64, P213
[7]   GAUGE-INVARIANCE AND CURRENT-ALGEBRA IN NONRELATIVISTIC MANY-BODY THEORY [J].
FROHLICH, J ;
STUDER, UM .
REVIEWS OF MODERN PHYSICS, 1993, 65 (03) :733-802
[8]   BOSONIZATION OF FERMI SYSTEMS IN ARBITRARY DIMENSION IN TERMS OF GAUGE FORMS [J].
FROHLICH, J ;
GOTSCHMANN, R ;
MARCHETTI, PA .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1995, 28 (05) :1169-1203
[9]   BOSONIZATION, TOPOLOGICAL SOLITONS AND FRACTIONAL CHARGES IN TWO-DIMENSIONAL QUANTUM-FIELD THEORY [J].
FROHLICH, J ;
MARCHETTI, P .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1988, 116 (01) :127-173
[10]  
Frohlich J., UNPUB