ACTIVATION OF HEAT-SHOCK FACTOR-II DURING HEMIN-INDUCED DIFFERENTIATION OF HUMAN ERYTHROLEUKEMIA-CELLS

被引:250
作者
SISTONEN, L [1 ]
SARGE, KD [1 ]
PHILLIPS, B [1 ]
ABRAVAYA, K [1 ]
MORIMOTO, RI [1 ]
机构
[1] NORTHWESTERN UNIV,DEPT BIOCHEM MOLEC BIOL & CELL BIOL,EVANSTON,IL 60208
关键词
D O I
10.1128/MCB.12.9.4104
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Hemin induces nonterminal differentiation of human K562 erythroleukemia cells, which is accompanied by the expression of certain erythroid cell-specific genes, such as the embryonic and fetal globins, and elevated expression of the stress genes hsp70, hsp90, and grp78/BiP. Previous studies revealed that, as during heat shock, transcriptional induction of hsp70 in hemin-treated cells is mediated by activation of heat shock transcription factor (HSF), which binds to the heat shock element (HSE). We report here that hemin activates the DNA-binding activity of HSF2, whereas heat shock induces predominantly the DNA-binding activity of a distinct factor, HSF1. This constitutes the first example of HSF2 activation in vivo. Both hemin and heat shock treatments resulted in equivalent levels of HSF-HSE complexes as analyzed in vitro by gel mobility shift assay, yet transcription of the hsp70 gene was stimulated much less by hemin-induced HSF than by heat shock-induced HSF. Genomic footprinting experiments revealed that hemin-induced HSF and heat shock-induced HSF, HSF2, and HSF1, respectively, occupy the HSE of the human hsp70 promoter in a similar yet not identical manner. We speculate that the difference in occupancy and/or in the transcriptional abilities of HSF1 and HSF2 accounts for the observed differences in the stimulation of hsp70 gene transcription.
引用
收藏
页码:4104 / 4111
页数:8
相关论文
共 48 条