NEW LOWER BOUNDS FOR BINARY COVERING CODES

被引:8
作者
LI, DF [1 ]
CHEN, W [1 ]
机构
[1] ACAD SINICA, INST SYST SCI, BEIJING 100080, PEOPLES R CHINA
关键词
COVERING CODE; MULTIEXCESS; R-EXCESS; LINEAR INEQUALITY;
D O I
10.1109/18.335963
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Lower bounds for K(n,R), the minimal number of codewords of any binary code of length n and covering radius R, are improved. The definition of multiexcess is introduced. A technique combining van Wee's method and linear inequalities for covering codes is used. A revised table for K(n,R) (n less-than-or-equal-to 33, R less-than-or-equal-to 10) is given.
引用
收藏
页码:1122 / 1129
页数:8
相关论文
共 32 条
[1]  
Bannai E., 1984, ALGEBRAIC COMBINATOR
[2]   INTEGER-MAKING THEOREMS [J].
BECK, J ;
FIALA, T .
DISCRETE APPLIED MATHEMATICS, 1981, 3 (01) :1-8
[3]   SHORT CODES WITH A GIVEN COVERING RADIUS [J].
BRUALDI, RA ;
PLESS, VS ;
WILSON, RM .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1989, 35 (01) :99-109
[4]   INEQUALITIES FOR COVERING CODES [J].
CALDERBANK, AR ;
SLOANE, NJA .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1988, 34 (05) :1276-1280
[5]   LOWER BOUNDS FOR Q-ARY COVERING CODES [J].
CHEN, W ;
HONKALA, IS .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1990, 36 (03) :664-671
[6]  
CLAYTON RF, 1990, CODING THEORY DESI 1, P51
[7]  
CLAYTON RF, 1987, THESIS U CALIFORNIA
[8]   FURTHER RESULTS ON THE COVERING RADIUS OF CODES [J].
COHEN, GD ;
LOBSTEIN, AC ;
SLOANE, NJA .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1986, 32 (05) :680-694
[9]   COVERING RADIUS - SURVEY AND RECENT RESULTS [J].
COHEN, GD ;
KARPOVSKY, MG ;
MATTSON, HF ;
SCHATZ, JR .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1985, 31 (03) :328-343
[10]  
Erdos P., 1963, PUBL MATH-DEBRECEN, V10, P10