QUANTIZATION OF THE CONFORMAL KEPLER-PROBLEM AND ITS APPLICATION TO THE HYDROGEN-ATOM

被引:32
作者
IWAI, T
机构
关键词
D O I
10.1063/1.525473
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
引用
收藏
页码:1093 / 1099
页数:7
相关论文
共 21 条
[1]  
ABRAHAM R, 1978, F MECHANICS, P428
[2]   A RELATION BETWEEN HYDROGEN ATOM AND MULTIDIMENSIONAL HARMONIC OSCILLATORS [J].
BERGMANN, D ;
FRISHMAN, Y .
JOURNAL OF MATHEMATICAL PHYSICS, 1965, 6 (12) :1855-&
[4]  
Dirac P.A.M., 1964, LECT QUANTUM MECH
[5]   SPACE-TIME APPROACH TO NON-RELATIVISTIC QUANTUM MECHANICS [J].
FEYNMAN, RP .
REVIEWS OF MODERN PHYSICS, 1948, 20 (02) :367-387
[6]  
GOLDBERG SI, 1962, CURVATURE HOMOLOGY, P115
[7]  
Ikeda M., 1970, MATH JPN, V15, P127
[8]   ON A CONFORMAL KEPLER-PROBLEM AND ITS REDUCTION [J].
IWAI, T .
JOURNAL OF MATHEMATICAL PHYSICS, 1981, 22 (08) :1633-1639
[9]   ON REDUCTION OF THE 4-DIMENSIONAL HARMONIC-OSCILLATOR [J].
IWAI, T .
JOURNAL OF MATHEMATICAL PHYSICS, 1981, 22 (08) :1628-1632
[10]   THE SYMMETRY GROUP OF THE HARMONIC-OSCILLATOR AND ITS REDUCTION [J].
IWAI, T .
JOURNAL OF MATHEMATICAL PHYSICS, 1982, 23 (06) :1088-1092