NUMERICAL-INTEGRATION FOR POLYATOMIC SYSTEMS

被引:448
作者
VELDE, GT
BAERENDS, EJ
机构
[1] Afdeling Theoretische Chemie, Scheikundig Laboratorium, Vrije Universiteit, De Boelelaan 1083, 1081 HV, Amsterdam, Netherlands
关键词
D O I
10.1016/0021-9991(92)90277-6
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
A numerical integration package is presented for three-dimensional integrals occurring in electronic structure calculations, applicable to all polyatomic systems with periodicity in 0 (molecules), 1 (chains), 2 (slabs), or 3 dimensions (crystals). The scheme is cellular in nature, based on Gaussian product formulas and it makes use of the geometrical symmetry. Convergence of accuracy with the number of points is rapid and use of the program has been made easy.
引用
收藏
页码:84 / 98
页数:15
相关论文
共 23 条
[1]  
[Anonymous], 1961, MATH COMPUT
[2]   PSEUDOSPHERICAL INTEGRATION SCHEME FOR ELECTRONIC-STRUCTURE CALCULATIONS [J].
AVERILL, FW ;
PAINTER, GS .
PHYSICAL REVIEW B, 1989, 39 (12) :8115-8121
[3]   Self-consistent molecular Hartree-Fock-Slater calculations - I. The computational procedure [J].
Baerends, E. J. ;
Ellis, D. E. ;
Ros, P. .
CHEMICAL PHYSICS, 1973, 2 (01) :41-51
[4]   A MULTICENTER NUMERICAL-INTEGRATION SCHEME FOR POLYATOMIC-MOLECULES [J].
BECKE, AD .
JOURNAL OF CHEMICAL PHYSICS, 1988, 88 (04) :2547-2553
[5]   3-DIMENSIONAL NUMERICAL-INTEGRATION FOR ELECTRONIC-STRUCTURE CALCULATIONS [J].
BOERRIGTER, PM ;
VELDE, GT ;
BAERENDS, EJ .
INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, 1988, 33 (02) :87-113
[8]   Discrete variational method for the energy-band problem with general crystal potentials [J].
Ellis, D. E. ;
Painter, G. S. .
PHYSICAL REVIEW B-SOLID STATE, 1970, 2 (08) :2887-2898
[9]  
ELLIS DE, 1968, INT J QUANTUM CHEM, V2, P35
[10]  
Krylov VI., 2006, APPROXIMATE CALCULAT