A COMBINATORIAL CONSTRUCTION OF THE SCHUBERT POLYNOMIALS

被引:11
作者
BERGERON, N
机构
[1] Princeton University, NJ 08544-1000, Department Mathematics Fine Hall-Washington Rd. Princeton
关键词
D O I
10.1016/0097-3165(92)90002-C
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show a combinatorial rule based on diagrams (finite nonempty sets of lattice points (i, j) in the positive quadrant) for the construction of the Schubert polynomials. In the particular case where the Schubert polynomial is a Schur function we give a bijection between our diagrams and column strict tableaux. A different algorithm had been conjectured (and proved in the case of vexillary permutations) by A. Kohnert (Ph.D. dissertation, Universität auf Bayreuth, 1990). We give, at the end of this paper, a sketch of how one would show the equivalence of the two rules. © 1992.
引用
收藏
页码:168 / 182
页数:15
相关论文
共 16 条
[1]  
BERGERON N, 1990, LINEAR MULTILINEAR A, V27
[2]  
Bernstein I.N., 1973, RUSS MATH SURV, V28, P1, DOI 10.1070/RM1973v028n03ABEH001557
[3]  
Demazure M., 1974, ANN SCI ECOLE NORM S, V7, P53
[4]  
Kohnert A, 1990, BAY MATH SCHRIFTEN, V38, P1
[5]   SCHUBERT POLYNOMIALS AND THE LITTLEWOOD-RICHARDSON RULE [J].
LASCOUX, A ;
SCHUTZENBERGER, MP .
LETTERS IN MATHEMATICAL PHYSICS, 1985, 10 (2-3) :111-124
[6]  
LASCOUX A, 1982, CR ACAD SCI I-MATH, V294, P447
[7]  
LASCOUX A, 1982, CR ACAD SCI I-MATH, V295, P393
[8]  
LASCOUX A, 1974, B SOC MATH FR, V102, P161
[9]  
LASCOUX A, 1985, LECT NOTES MATH, V1146, P161
[10]  
LASCOUX A, 1983, LECT NOTES MATH, V996, P118