A DERIVATION OF A PHASE FIELD MODEL WITH FLUID PROPERTIES

被引:7
作者
CAGINALP, G [1 ]
JONES, J [1 ]
机构
[1] UNIV PITTSBURGH,DEPT MATH,PITTSBURGH,PA 15260
基金
美国国家科学基金会;
关键词
D O I
10.1016/0893-9659(91)90178-X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We extend the basic phase field model to physical problems in which fluid properties, such as velocity, pressure and density variations, are incorporated along with heat properties within the context of a unified and consistent derivation. One thereby obtains a system of parabolic differential equations with the variables temperature, phase, fluid velocity, density and pressure. The constants in the equations can be related to a rate constant and to equilibrium values in the pure phases.
引用
收藏
页码:97 / 100
页数:4
相关论文
共 6 条
[1]   STEFAN AND HELE-SHAW TYPE MODELS AS ASYMPTOTIC LIMITS OF THE PHASE-FIELD EQUATIONS [J].
CAGINALP, G .
PHYSICAL REVIEW A, 1989, 39 (11) :5887-5896
[2]  
CAGINALP G, 1988, S MAT INSTABILITIES
[3]  
CHADAM J, 1990, JUL P INT C MONTR CA
[4]   THEORY OF DYNAMIC CRITICAL PHENOMENA [J].
HOHENBERG, PC ;
HALPERIN, BI .
REVIEWS OF MODERN PHYSICS, 1977, 49 (03) :435-479
[5]  
Landau L. D., 1976, FLUID MECH-SOV RES, V1
[6]   FREE DENDRITIC GROWTH IN VISCOUS MELTS - CYCLOHEXANOL [J].
SINGH, NB ;
GLICKSMAN, ME .
JOURNAL OF CRYSTAL GROWTH, 1989, 98 (03) :534-540