ASYMPTOTIC WORK ESTIMATES FOR AMLI METHODS

被引:7
作者
AXELSSON, O [1 ]
VASSILEVSKI, PS [1 ]
机构
[1] BULGARIAN ACAD SCI,CTR INFORMAT & COMP TECHNOL,BU-1113 SOFIA,BULGARIA
关键词
WORK ESTIMATES; ALGEBRAIC MULTILEVEL METHODS; ELLIPTIC PROBLEMS; CONJUGATE GRADIENTS;
D O I
10.1016/0168-9274(91)90012-O
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Recently the authors have presented the AMLI (algebraic multilevel iteration) method to solve second-order elliptic equations discretized by finite element methods on an arbitrary triangular mesh and shown that the method has an optimal rate of convergence and an optimal order of computational complexity. In the present paper we derive sharp upper bounds and asymptotic estimates for the computational labor and apply these estimates for the above type of problems.
引用
收藏
页码:437 / 451
页数:15
相关论文
共 18 条
[1]  
AXELSSON O, 1989, NUMER MATH, V56, P157, DOI 10.1007/BF01409783
[2]   ALGEBRAIC MULTILEVEL PRECONDITIONING METHODS .2. [J].
AXELSSON, O ;
VASSILEVSKI, PS .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1990, 27 (06) :1569-1590
[3]  
AXELSSON O, 1982, LECT NOTES MATH, V960, P352
[4]  
AXELSSON O, 1983, MATH COMPUT, V40, P212
[5]  
AXELSSON O, 1989, PARALLEL SUPERCOMPUT, P191
[6]  
AXELSSON O, IN PRESS SISSC
[7]  
Axelsson O, 1984, COMPUTER SCI APPL MA
[8]  
BANK RE, 1980, CNA159 U TEX CTR NUM
[9]   THE CONTRACTION NUMBER OF A MULTIGRID METHOD FOR SOLVING THE POISSON EQUATION [J].
BRAESS, D .
NUMERISCHE MATHEMATIK, 1981, 37 (03) :387-404
[10]  
BRAESS D, 1982, LECT NOTES MATH, V960, P368