DAHLQUIST 1ST BARRIER FOR MULTISTAGE MULTISTEP FORMULAS

被引:3
作者
JELTSCH, R
NEVANLINNA, O
机构
[1] RHEIN WESTFAL TH AACHEN,INST GEOMETRIE & PRAKT MATH,D-5100 AACHEN,FED REP GER
[2] HELSINKI UNIV TECHNOL,INST MATH,SF-02150 ESPOO 15,FINLAND
来源
BIT | 1984年 / 24卷 / 04期
关键词
D O I
10.1007/BF01934912
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
引用
收藏
页码:538 / 555
页数:18
相关论文
共 11 条
[1]  
DAHLQUIST G, 1959, T ROY I TECH STOCKHO, V130
[2]  
Dahlquist G, 1956, MATH SCAND, V4, P33, DOI DOI 10.7146/MATH.SCAND.A-10454
[3]  
DAHLQUIST G, 1976, THEORY LINEAR MULTIS
[4]  
Henrici P, 1962, DISCRETE VARIABLE ME
[5]  
ISERLES A, UNPUB PROOF 1ST DAHL
[6]   STABILITY OF EXPLICIT TIME DISCRETIZATIONS FOR SOLVING INITIAL VALUE-PROBLEMS [J].
JELTSCH, R ;
NEVANLINNA, O .
NUMERISCHE MATHEMATIK, 1981, 37 (01) :61-91
[7]   STABILITY AND ACCURACY OF TIME DISCRETIZATIONS FOR INITIAL-VALUE PROBLEMS [J].
JELTSCH, R ;
NEVANLINNA, O .
NUMERISCHE MATHEMATIK, 1982, 40 (02) :245-296
[8]  
JELTSCH R, 1983, RWTH23 I GEOM PRAKT
[9]  
JELTSCH R, 1983, SIAM J NUMER ANAL, V20
[10]   FINITE DIFFERENCE FORMS CONTAINING DERIVATIVES OF HIGHER ORDER [J].
REIMER, M .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1968, 5 (04) :725-&