IDENTIFICATION OF PRE-MESSENGER-RNA POLYADENYLATION SITES IN SACCHAROMYCES-CEREVISIAE

被引:52
作者
HEIDMANN, S [1 ]
OBERMAIER, B [1 ]
VOGEL, K [1 ]
DOMDEY, H [1 ]
机构
[1] LUDWIG MAXIMILIANS UNIV, GENZENTRUM, MOLEK BIOL LAB, KLOPFERSPITZ 18A, W-8033 MARTINSRIED, GERMANY
关键词
D O I
10.1128/MCB.12.9.4215
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
In contrast to higher eukaryotes, little is known about the nature of the sequences which direct 3'-end formation of pre-mRNAs in the yeast Saccharomyces cerevisiae. The hexanucleotide AAUAAA, which is highly conserved and crucial in mammals, does not seem to have any functional importance for 3'-end formation in yeast cells. Instead, other elements have been proposed to serve as signal sequences. We performed a detailed investigation of the yeast ACT1, ADH1, CYC1, and YPT1 cDNAs, which showed that the polyadenylation sites used in vivo can be scattered over a region spanning up to 200 nucleotides. It therefore seems very unlikely that a single signal sequence is responsible for the selection of all these polyadenylation sites. Our study also showed that in the large majority of mRNAs, polyadenylation starts directly before or after an adenosine residue and that 3'-end formation of ADH1 transcripts occurs preferentially at the sequence PyAAA. Site-directed mutagenesis of these sites in the ADH1 gene suggested that this PyAAA sequence is essential for polyadenylation site selection both in vitro and in vivo. Furthermore, the 3'-terminal regions of the yeast genes investigated here are characterized by their capacity to act as signals for 3'-end formation in vivo in either orientation.
引用
收藏
页码:4215 / 4229
页数:15
相关论文
共 50 条
[1]   SIGNAL SEQUENCE FOR GENERATION OF MESSENGER-RNA 3' END IN THE SACCHAROMYCES-CEREVISIAE GAL7 GENE [J].
ABE, A ;
HIRAOKA, Y ;
FUKASAWA, T .
EMBO JOURNAL, 1990, 9 (11) :3691-3697
[2]  
AMMERER G, 1983, METHOD ENZYMOL, V101, P192
[3]  
BENNETZEN JL, 1982, J BIOL CHEM, V257, P3018
[4]   SIZING AND MAPPING OF EARLY ADENOVIRUS MESSENGER-RNAS BY GEL-ELECTROPHORESIS OF S1 ENDONUCLEASE-DIGESTED HYBRIDS [J].
BERK, AJ ;
SHARP, PA .
CELL, 1977, 12 (03) :721-732
[5]  
BULLOCK WO, 1987, BIOTECHNIQUES, V5, P376
[6]   RNA PROCESSING GENERATES THE MATURE 3' END OF YEAST CYC1 MESSENGER-RNA INVITRO [J].
BUTLER, JS ;
PLATT, T .
SCIENCE, 1988, 242 (4883) :1270-1274
[7]   RNA PROCESSING INVITRO PRODUCES MATURE 3' ENDS OF A VARIETY OF SACCHAROMYCES-CEREVISIAE MESSENGER-RNAS [J].
BUTLER, JS ;
SADHALE, PP ;
PLATT, T .
MOLECULAR AND CELLULAR BIOLOGY, 1990, 10 (06) :2599-2605
[8]   SUPERCOIL SEQUENCING - A FAST AND SIMPLE METHOD FOR SEQUENCING PLASMID DNA [J].
CHEN, EY ;
SEEBURG, PH .
DNA-A JOURNAL OF MOLECULAR & CELLULAR BIOLOGY, 1985, 4 (02) :165-170
[9]   RAPID PRODUCTION OF FULL-LENGTH CDNAS FROM RARE TRANSCRIPTS - AMPLIFICATION USING A SINGLE GENE-SPECIFIC OLIGONUCLEOTIDE PRIMER [J].
FROHMAN, MA ;
DUSH, MK ;
MARTIN, GR .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1988, 85 (23) :8998-9002
[10]   THE ACTIN GENE IN YEAST SACCHAROMYCES-CEREVISIAE - 5' AND 3' END MAPPING, FLANKING AND PUTATIVE REGULATORY SEQUENCES [J].
GALLWITZ, D ;
PERRIN, F ;
SEIDEL, R .
NUCLEIC ACIDS RESEARCH, 1981, 9 (23) :6339-6350