MODULAR INTERVAL SPACES

被引:25
作者
BANDELT, HJ [1 ]
VANDEVEL, M [1 ]
VERHEUL, E [1 ]
机构
[1] FREE UNIV AMSTERDAM, DEPT MATH & COMP SCI, 1081 HV AMSTERDAM, NETHERLANDS
关键词
D O I
10.1002/mana.19931630117
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Modular interval spaces represent a common generalization of Banach spaces of type L1(mu) or B(X), of hyperconvex metric spaces, modular lattices, modular graphs, and median algebras. It turns out that several types of structures are susceptible for a notion capturing essential features of modularity in lattices, e.g., semilattices, multilattices, metric spaces, ternary algebras, and graphs. There is no perfect correspondence between modular structures of various types unless the existence of a neutral point is imposed. Modular structures with neutral points embed in modular lattices. Particular modular interval spaces (e.g., median spaces, or more generally, modular spaces in which intervals and lattices) can be characterized by forbidden subspaces.
引用
收藏
页码:177 / 201
页数:25
相关论文
共 33 条
[2]   HEREDITARY MODULAR GRAPHS [J].
BANDELT, HJ .
COMBINATORICA, 1988, 8 (02) :149-157
[3]   NETWORKS WITH CONDORCET SOLUTIONS [J].
BANDELT, HJ .
EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 1985, 20 (03) :314-326
[4]   ABSOLUTE RETRACTS OF BIPARTITE GRAPHS [J].
BANDELT, HJ ;
DAHLMANN, A ;
SCHUTTE, H .
DISCRETE APPLIED MATHEMATICS, 1987, 16 (03) :191-215
[5]   PSEUDO-MODULAR GRAPHS [J].
BANDELT, HJ ;
MULDER, HM .
DISCRETE MATHEMATICS, 1986, 62 (03) :245-260
[6]   MEDIAN ALGEBRAS [J].
BANDELT, HJ ;
HEDLIKOVA, J .
DISCRETE MATHEMATICS, 1983, 45 (01) :1-30
[7]  
BANDELT HJ, IN PRESS EUROPEAN J
[8]  
BANDELT HJ, 1992, HELLY THEOREM WEAKLY
[9]  
Benado M., 1955, CZECH MATH J, V5, P308
[10]  
BIRKHOFF G, 1967, AMS C PUBL, V25