Regional Climate Models for Hydrological Impact Studies at the Catchment Scale: A Review of Recent Modeling Strategies

被引:269
作者
Teutschbein, Claudia [1 ]
Seibert, Jan [1 ,2 ]
机构
[1] Stockholm Univ, Dept Phys Geog & Quaternary Geol, S-10691 Stockholm, Sweden
[2] Univ Zurich, Dept Geog, Zurich, Switzerland
来源
GEOGRAPHY COMPASS | 2010年 / 4卷 / 07期
基金
瑞典研究理事会;
关键词
D O I
10.1111/j.1749-8198.2010.00357.x
中图分类号
P9 [自然地理学]; K9 [地理];
学科分类号
0705 ; 070501 ;
摘要
This article reviews recent applications of regional climate model (RCM) output for hydrological impact studies. Traditionally, simulations of global climate models (GCMs) have been the basis of impact studies in hydrology. Progress in regional climate modeling has recently made the use of RCM data more attractive, although the application of RCM simulations is challenging due to often considerable biases. The main modeling strategies used in recent studies can be classified into (i) very simple constructed modeling chains with a single RCM (S-RCM approach) and (ii) highly complex and computing-power intensive model systems based on RCM ensembles (E-RCM approach). In the literature many examples for S-RCM can be found, while comprehensive E-RCM studies with consideration of several sources of uncertainties such as different greenhouse gas emission scenarios, GCMs, RCMs and hydrological models are less common. Based on a case study using control-run simulations of fourteen different RCMs for five Swedish catchments, the biases of and the variability between different RCMs are demonstrated. We provide a short overview of possible bias-correction methods and show that inter-RCM variability also has substantial consequences for hydrological impact studies in addition to other sources of uncertainties in the modeling chain. We propose that due to model bias and inter-model variability, the S-RCM approach is not advised and ensembles of RCM simulations (E-RCM) should be used. The application of bias-correction methods is recommended, although one should also be aware that the need for bias corrections adds significantly to uncertainties in modeling climate change impacts.
引用
收藏
页码:834 / 860
页数:27
相关论文
共 85 条
[1]  
Akhtar M, 2008, HYDROL EARTH SYST SC, V5, P865
[2]   The effect of climate change on hydrological regimes in Europe: a continental perspective [J].
Arnell, NW .
GLOBAL ENVIRONMENTAL CHANGE-HUMAN AND POLICY DIMENSIONS, 1999, 9 (01) :5-23
[3]   Assessing uncertainties in crop model simulations using daily bias-corrected Regional Circulation Model outputs [J].
Baigorria, Guillermo A. ;
Jones, James W. ;
Shin, Dong-Wook ;
Mishra, Ashok ;
O'Brien, James J. .
CLIMATE RESEARCH, 2007, 34 (03) :211-222
[4]  
Beldring S, 2008, TELLUS A, V60, P439, DOI [10.1111/j.1600-0870.2008.00306.x, 10.1111/J.1600-0870.2008.00306.X]
[5]   Use of a grid-based hydrological model and regional climate model outputs to assess changing flood risk [J].
Bell, V. A. ;
Kay, A. L. ;
Jones, R. G. ;
Moore, R. J. .
INTERNATIONAL JOURNAL OF CLIMATOLOGY, 2007, 27 (12) :1657-1671
[6]   Development of a high resolution grid-based river flow model for use with regional climate model output [J].
Bell, V. A. ;
Kay, A. L. ;
Jones, R. G. ;
Moore, R. J. .
HYDROLOGY AND EARTH SYSTEM SCIENCES, 2007, 11 (01) :532-549
[7]   Climate change impacts on runoff in Sweden -: assessments by global climate models, dynamical downscaling and hydrological modelling [J].
Bergström, S ;
Carlsson, B ;
Gardelin, M ;
Lindström, G ;
Pettersson, A ;
Rummukainen, M .
CLIMATE RESEARCH, 2001, 16 (02) :101-112
[8]   A Streamflow Forecasting Framework using Multiple Climate and Hydrological Models1 [J].
Block, Paul J. ;
Souza Filho, Francisco Assis ;
Sun, Liqiang ;
Kwon, Hyun-Han .
JOURNAL OF THE AMERICAN WATER RESOURCES ASSOCIATION, 2009, 45 (04) :828-843
[9]   Climate change impacts-throwing the dice? [J].
Bloeschl, Guenter ;
Montanari, Alberto .
HYDROLOGICAL PROCESSES, 2010, 24 (03) :374-381
[10]   Statistical and dynamical downscaling of the Seine basin climate for hydro-meteorological studies [J].
Boe, J. ;
Terray, L. ;
Habets, F. ;
Martin, E. .
INTERNATIONAL JOURNAL OF CLIMATOLOGY, 2007, 27 (12) :1643-1655