ON THE SINGULARITIES OF CONVEX-FUNCTIONS

被引:77
作者
ALBERTI, G [1 ]
AMBROSIO, L [1 ]
CANNARSA, P [1 ]
机构
[1] UNIV ROMA TOR VERGATA,DIPARTIMENTO MATEMAT 2,I-00173 ROME,ITALY
关键词
D O I
10.1007/BF02567770
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Given a semi-convex function u : OMEGA subset-of R(n) --> R and an integer k is-an-element-of [0, n], we show that the set SIGMA(k) defined by SIGMA(k) = {x is-an-element-of OMEGA : dim(partial derivative u(x)) greater-than-or-equal-to k} is countably H(n-k)-rectifiable, i.e., it is contained (up to a H(n-k)-negligible set) in a countable union of C1 hypersurfaces of dimension (n - k). Moreover, we show that [GRAPHICS](~)for any open set OMEGA' subset-of subset-of OMEGA.
引用
收藏
页码:421 / 435
页数:15
相关论文
共 19 条
[1]  
ALBERTI G, 1992, IN PRESS
[2]  
AMBROSIO L, 1992, IN PRESS ATTI ACCAD
[3]  
AMBROSIO L, 1992, IN PRESS PROPAGATION
[4]  
Aubin J.P., 1990, SET-VALUED ANAL, V2, DOI 10.1007/978-0-8176-4848-0
[5]   ON THE SINGULARITIES OF THE VISCOSITY SOLUTIONS TO HAMILTON-JACOBI-BELLMAN EQUATIONS [J].
CANNARSA, P ;
SONER, HM .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1987, 36 (03) :501-524
[6]  
CANNARSA P, 1991, SIAM J CONTROL OPTIM, V29
[7]  
Clarke F.H., 1983, OPTIMIZATION NONSMOO
[8]  
De Giorgi E., 1955, RIC MAT, V4, P95
[9]  
Ekeland I., 1976, CONVEX ANAL VARIATIO
[10]  
Federer H., 1969, GRUNDLEHREN MATH WIS