THE FINITENESS CONJECTURE FOR THE GENERALIZED SPECTRAL-RADIUS OF A SET OF MATRICES

被引:131
作者
LAGARIAS, JC [1 ]
WANG, Y [1 ]
机构
[1] GEORGIA INST TECHNOL,SCH MATH,ATLANTA,GA 30332
关键词
D O I
10.1016/0024-3795(93)00052-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The generalized spectral radius ($) over bar rho(Sigma) of a set Sigma of n x n matrices is ($) over bar rho(Sigma) = lim sup(k-->infinity)($) over bar rho(k)(Sigma)(1/k), where ($) over bar rho(k)(Sigma) = sup{rho(A(1)A(2)...A(k)):each A(i) is an element of Sigma}. The joint spectral radius ($) over cap rho(Sigma) is ($) over cap rho(Sigma) = lim sup(k-->infinity)($) over cap rho(k)(Sigma)(1/k), where ($) over cap rho(k)(Sigma) = sup{\\A(1)... A(k)\\:each A(i) is an element of Sigma}. It is known that ($) over cap rho(Sigma) = ($) over bar rho(Sigma) holds for any finite set Sigma of n x n matrices. The finiteness conjecture asserts that for any finite set Sigma of real n x n matrices there exists a finite k such that ($) over cap rho(Sigma) = ($) over bar rho(Sigma) = ($) over bar rho(k)(Sigma)(1/k). The normed finiteness conjecture for a given operator norm asserts that for any finite set Sigma = {A(1),...,A(m)} having all \\A(i)\\(op) less than or equal to 1, either ($) over cap rho(Sigma) < 1 or ($) over cap rho(Sigma) = ($) over bar rho(Sigma) = ($) over bar rho(k)(Sigma)(1/k) = 1 for some finite k. It is shown that the finiteness conjecture is true if and only if the normed finiteness conjecture is true for all operator norms. The normed finiteness conjecture is proved for a large class of operator norms, extending results of Gurvits. In particular, for polytope norms and for the Euclidean norm, explicit upper bounds are given for the least k having ($) over bar rho(Sigma) = ($) over bar rho(k)(Sigma)(1/k). These results imply upper bounds for generalized critical exponents for these norms.
引用
收藏
页码:17 / 42
页数:26
相关论文
共 19 条
[1]  
BELITSKII GR, 1988, MATRIX NORMS THEIR A
[2]   BOUNDED SEMIGROUPS OF MATRICES [J].
BERGER, MA ;
WANG, Y .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1992, 166 :21-27
[3]   THE CHARACTERIZATION OF CONTINUOUS, 4-COEFFICIENT SCALING FUNCTIONS AND WAVELETS [J].
COLELLA, D ;
HEIL, C .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1992, 38 (02) :876-881
[4]  
COLELLA D, 1992, CHARACTERIZATIONS 1
[5]   2-SCALE DIFFERENCE-EQUATIONS .1. EXISTENCE AND GLOBAL REGULARITY OF SOLUTIONS [J].
DAUBECHIES, I ;
LAGARIAS, JC .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1991, 22 (05) :1388-1410
[6]   2-SCALE DIFFERENCE-EQUATIONS .2. LOCAL REGULARITY, INFINITE PRODUCTS OF MATRICES AND FRACTALS [J].
DAUBECHIES, I ;
LAGARIAS, JC .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1992, 23 (04) :1031-1079
[7]  
DAUBECHIES I, 1992, LINEAR ALGEBRA APPL, V162, P227
[8]  
Furstenberg H., 1981, RECURRENCE ERGODIC T
[9]  
GURVITS L, 1992, 1992 P IEEE REG CONT, P150
[10]  
GURVITS L, 1994, IN PRESS LINEAR ALGE