EXPECTATIONS AND ENTROPY INEQUALITIES FOR FINITE QUANTUM SYSTEMS

被引:154
作者
LINDBLAD, G [1 ]
机构
[1] ROY INST TECHNOL, DEPT THEORETICAL PHYS, LINDSTEDTSVAGEN 15, S-100 44 STOCKHOLM 70, SWEDEN
关键词
D O I
10.1007/BF01608390
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
引用
收藏
页码:111 / 119
页数:9
相关论文
共 20 条
[1]  
[Anonymous], 1969, Introduction to the Theory of Linear Nonselfadjoint Operators in Hilbert space
[2]   ANALYTICITY IN OPERATOR ALGEBRAS [J].
ARVESON, WB .
AMERICAN JOURNAL OF MATHEMATICS, 1967, 89 (03) :578-&
[3]  
BAUMANN F, 1971, HELV PHYS ACTA, V44, P95
[4]  
Bendat J., 1955, T AM MATH SOC, V79, P58, DOI [10.1090/S0002-9947-1955-0082655-4, DOI 10.1090/S0002-9947-1955-0082655-4]
[5]  
DAVIS C, 1957, P AM MATH SOC, V8, P41
[6]  
Hardy G. H., 1952, Inequalities
[7]  
KOVACS I, 1966, ACTA SCI MATH, V27, P233
[8]  
KULLBACK S, 1959, INFORMATION THEORY S
[9]   PROOF OF STRONG SUBADDITIVITY OF QUANTUM-MECHANICAL ENTROPY [J].
LIEB, EH ;
RUSKAI, MB .
JOURNAL OF MATHEMATICAL PHYSICS, 1973, 14 (12) :1938-1941
[10]   CONVEX TRACE FUNCTIONS AND WIGNER-YANASE-DYSON CONJECTURE [J].
LIEB, EH .
ADVANCES IN MATHEMATICS, 1973, 11 (03) :267-288