NON-TYPICAL WULFF SHAPES IN A CORNER - A MICROSCOPIC DERIVATION

被引:6
作者
DECONINCK, J
FRUTTERO, J
ZIERMANN, A
机构
[1] Université de Mons-Hainaut, 7000 Mons, 20, Place du Parc
来源
PHYSICA A | 1993年 / 196卷 / 03期
关键词
D O I
10.1016/0378-4371(93)90198-D
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A complete microscopic analysis of the equilibrium shape of a droplet in a corner between two walls is given within a Gaussian SOS model. We derive a statistical mechanical proof of the Winterbottom and the Summertop constructions for the equilibrium shapes, including a proof of generalized Young relations for inclined walls. We discuss a phase diagram with convexity-concavity transitions and wetting transitions induced by changing the inclination of the walls. A possible degeneracy of the solutions of the thermodynamic variational problem at the convexity-concavity transition point is discussed in the Gaussian model from a statistical mechanical point of view.
引用
收藏
页码:320 / 334
页数:15
相关论文
共 9 条
[1]  
ANDREEV AF, 1978, ZH EKSP TEOR FIZ, V48, P763
[2]   PARTIAL TO COMPLETE WETTING - A MICROSCOPIC DERIVATION OF THE YOUNG RELATION [J].
DECONINCK, J ;
DUNLOP, F .
JOURNAL OF STATISTICAL PHYSICS, 1987, 47 (5-6) :827-849
[3]  
DECONINCK J, UNPUB
[4]  
DUNLOP F, COMMUNICATION
[5]   EQUILIBRIUM SHAPE OF A PARTICLE AT MACROSCOPIC STEPS AND KINKS AND GIBBS-WULFF CONSTRUCTION [J].
LEE, JK ;
AARONSON, HI .
SURFACE SCIENCE, 1975, 47 (02) :692-696
[6]   WETTING IN A CORNER AND RELATED QUESTIONS [J].
POMEAU, Y .
JOURNAL OF COLLOID AND INTERFACE SCIENCE, 1986, 113 (01) :5-11
[7]  
TAYLOR JE, 1987, ASTERISQUE, V154, P307
[8]  
TAYLOR JE, 1974, P S PURE MATH, V27, P481
[9]   THE SUMMERTOP CONSTRUCTION - CRYSTALS IN A CORNER [J].
ZIA, RKP ;
AVRON, JE ;
TAYLOR, JE .
JOURNAL OF STATISTICAL PHYSICS, 1988, 50 (3-4) :727-736