HOLONOMY AND ENTROPY ESTIMATES FOR DYNAMICALLY TRIANGULATED MANIFOLDS

被引:7
作者
CARFORA, M
MARZUOLI, A
机构
[1] IST NAZL FIS NUCL,SEZ PAVIA,I-27100 PAVIA,ITALY
[2] UNIV PAVIA,DIPARTIMENTO FIS NUCL & TEOR,I-27100 PAVIA,ITALY
关键词
D O I
10.1063/1.531248
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We provide an elementary proof of the exponential bound to the number of distinct dynamical triangulations of an n-dimensional manifold M (n greater than or equal to 2), of given volume and fixed topology. The resulting entropy estimates emphasize the basic role, in simplicial quantum gravity, of the moduli spaces H o m(pi(1)(M),G)/G associated with the representations of the fundamental group of the manifold, pi(1)(M), into a Lie group G. (C) 1995 American Institute of Physics.
引用
收藏
页码:6353 / 6376
页数:24
相关论文
共 48 条
[1]   DISEASES OF TRIANGULATED RANDOM SURFACE MODELS, AND POSSIBLE CURES [J].
AMBJORN, J ;
DURHUUS, B ;
FROHLICH, J .
NUCLEAR PHYSICS B, 1985, 257 (03) :433-449
[2]  
Ambjorn J., 1992, Nuclear Physics B, Proceedings Supplements, V25A, P8, DOI 10.1016/S0920-5632(05)80003-9
[3]  
Ambjorn J., 1994, FLUCTUATING GEOMETRI
[4]  
AMBJORN J, 1994, NBIHE9429 PREPR
[5]  
BARTOCCI C, IN PRESS J GEOM PHYS
[6]  
Besse A.L., 1986, EINSTEIN MANIFOLDS
[7]   NEW METHOD IN THE COMBINATORICS OF THE TOPOLOGICAL EXPANSION [J].
BESSIS, D .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1979, 69 (02) :147-163
[8]  
Bessis D., 1980, ADV APPL MATH, V1, P109, DOI 10.1016/0196-8858(80)90008-1
[9]  
BOLLOBAS B, 1979, GTM, V63
[10]  
BOULATOV DV, 1994, NBIHE9437 PREPR