SURFACE FITTING WITH HIERARCHICAL SPLINES

被引:108
作者
FORSEY, DR
BARTELS, RH
机构
[1] Computer Graphics Laboratory, Computer Science Department, University of Waterloo, Waterloo, Ontario
来源
ACM TRANSACTIONS ON GRAPHICS | 1995年 / 14卷 / 02期
关键词
THEORY;
D O I
10.1145/221659.221665
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
We consider the fitting of tenser-product parametric spline surfaces to gridded data. The continuity of the surface is provided by the basis chosen. When tenser-product splines are used with gridded data, the surface-fitting problem decomposes into a sequence of curve-fitting processes, making the computations particularly efficient. The use of a hierarchical representation for the surface adds further efficiency by adaptively decomposing the fitting process into subproblems involving only a portion of the data. Hierarchy also provides a means of storing the resulting surface in a compressed format. Our approach is compared to multiresolution analysis and the use of wavelets.
引用
收藏
页码:134 / 161
页数:28
相关论文
共 11 条
[1]  
Chui C, 1992, INTRO WAVELETS, V6, P697, DOI 10.1063/1.4823126
[2]  
de Boor C., 1978, PRACTICAL GUIDE SPLI
[3]  
Dierckx P., 1977, J COMPUT APPL MATH, V3, P113, DOI [10.1016/0771-050X(77)90007-9, DOI 10.1016/0771-050X(77)90007-9]
[4]   Hierarchical B-spline refinement [J].
Forsey, David R. ;
Bartels, Richard H. .
Computer Graphics (ACM), 1988, 22 (04) :205-212
[5]  
Golub G.H., 2013, MATRIX COMPUTATIONS
[6]  
Graham A., 2018, KRONECKER PRODUCTS M
[7]  
LYCHE T, 1992, 19924 U OSL I INF PR
[8]  
Schmitt F. J. M., 1986, Computer Graphics, V20, P179, DOI 10.1145/15886.15906
[9]  
SIVALINGAM S, 1994, THESIS U WATERLOO WA
[10]  
Spath H., 1990, EINDIMENSIONALE SPLI