A HYBRID ALGORITHM FOR OPTIMIZING EIGENVALUES OF SYMMETRICAL DEFINITE PENCILS

被引:8
作者
HAEBERLY, JPA [1 ]
OVERTON, ML [1 ]
机构
[1] NYU,COURANT INST MATH SCI,DEPT COMP SCI,NEW YORK,NY 10012
关键词
NONSMOOTH OPTIMIZATION; GENERALIZED EIGENVALUE PROBLEM; MATRIX PENCIL; LYAPUNOV EQUATIONS;
D O I
10.1137/S0895479893244833
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
An algorithm is presented for the optimization of the maximum eigenvalue of a symmetric definite pencil depending affinely on a vector of parameters. The algorithm uses a hybrid approach, combining a scheme based on the method of centers, developed by Boyd and El Ghaoui [Linear Algebra Appl., 188 (1993), pp. 63-1121, with a new quadratically convergent local scheme. A convenient expression for the generalized gradient of the maximum eigenvalue of the pencil is also given, expressed in terms of a dual matrix. The algorithm computes the dual matrix that establishes the optimality of the computed solution.
引用
收藏
页码:1141 / 1156
页数:16
相关论文
共 18 条
[1]  
ALIZADEH F, 1992, ADV OPTIMIZATION PAR
[2]   METHOD OF CENTERS FOR MINIMIZING GENERALIZED EIGENVALUES [J].
BOYD, S ;
ELGHAOUI, L .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1993, 188 :63-111
[3]  
Boyd S., 1994, SIAM STUD APPL MATH
[4]  
Clarke F, 1990, OPTIMIZATION NONSMOO, V5
[5]  
FAN MKH, 1992, 31ST P IEEE C DEC CO
[6]  
FLETCHER R, 1981, LECT NOTES MATH, V912, P85
[7]   THE FORMULATION AND ANALYSIS OF NUMERICAL-METHODS FOR INVERSE EIGENVALUE PROBLEMS [J].
FRIEDLAND, S ;
NOCEDAL, J ;
OVERTON, ML .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1987, 24 (03) :634-667
[8]  
GOLLAN B, 1987, MATH PROGRAM STUD, V30, P67, DOI 10.1007/BFb0121155
[9]  
HAEBERLY JP, 1991, 586 NEW YORK U COMP
[10]   AN INTERIOR-POINT METHOD FOR MINIMIZING THE MAXIMUM EIGENVALUE OF A LINEAR COMBINATION OF MATRICES [J].
JARRE, F .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1993, 31 (05) :1360-1377